
METHODOLOGY Open Access

Biocoder: A programming language for
standardizing and automating biology protocols
Vaishnavi Ananthanarayanan1*, William Thies2*

Abstract

Background: Published descriptions of biology protocols are often ambiguous and incomplete, making them
difficult to replicate in other laboratories. However, there is increasing benefit to formalizing the descriptions of
protocols, as laboratory automation systems (such as microfluidic chips) are becoming increasingly capable of
executing them. Our goal in this paper is to improve both the reproducibility and automation of biology
experiments by using a programming language to express the precise series of steps taken.

Results: We have developed BioCoder, a C++ library that enables biologists to express the exact steps needed to
execute a protocol. In addition to being suitable for automation, BioCoder converts the code into a readable,
English-language description for use by biologists. We have implemented over 65 protocols in BioCoder; the most
complex of these was successfully executed by a biologist in the laboratory using BioCoder as the only reference.
We argue that BioCoder exposes and resolves ambiguities in existing protocols, and could provide the software
foundations for future automation platforms. BioCoder is freely available for download at http://research.microsoft.
com/en-us/um/india/projects/biocoder/.

Conclusions: BioCoder represents the first practical programming system for standardizing and automating
biology protocols. Our vision is to change the way that experimental methods are communicated: rather than
publishing a written account of the protocols used, researchers will simply publish the code. Our experience
suggests that this practice is tractable and offers many benefits. We invite other researchers to leverage BioCoder
to improve the precision and completeness of their protocols, and also to adapt and extend BioCoder to new
domains.

Background
For decades, biologists have relied on written descrip-
tions of protocols to guide their experiments in the
laboratory. However, due to recent technology trends,
the practice of describing protocols with free-flowing
English-language text is quickly becoming inadequate
and obsolete. First, we are witnessing immense advances
in laboratory automation systems. The increasing den-
sity of microfluidic devices has been compared to
Moore’s Law [1,2], with recent products supporting up
to 9,216 parallel reactions [3]. In order to leverage such
technologies for biological experimentation, it will be
necessary to express the protocols in a format that is

not only comprehensible by humans, but also by
machines. Second, the complexity of biology protocols is
increasing dramatically. As fields such as synthetic biol-
ogy attempt to synthesize living systems as a composi-
tion of many parts, we will need to execute lengthy
protocols with great precision. It will become imperative
for researchers to share complete descriptions of their
methods in a form that can be consistently replicated in
other laboratories.
Unfortunately, today’s descriptions of biology protocols

are rarely suitable for either reproducibility or automa-
tion. One of the most glaring problems is that of incom-
pleteness: methods are described in the literature without
providing a complete and self-contained account of the
steps taken. For example, a recent protocol [4] indices
that methods for an electrophoretic mobility shift assay
(EMSA) were “as described previously”. While a citation
is given, the referenced paper [5] cites another [6], which

* Correspondence: ananthan@mpi-cbg.de; thies@microsoft.com
1Max Planck Institute for Molecular Cell Biology and Genetics,
Pfotenhauerstrasse 108, 01307 Dresden, Germany
2Microsoft Research India, 196/36 2nd Main, Sadashivanagar, Bangalore,
560080, India
Full list of author information is available at the end of the article

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

© 2010 Ananthanarayanan and Thies; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://research.microsoft.com/en-us/um/india/projects/biocoder/
http://research.microsoft.com/en-us/um/india/projects/biocoder/
mailto:ananthan@mpi-cbg.de
mailto:thies@microsoft.com
http://creativecommons.org/licenses/by/2.0

cites another [7], which cites another [8], each time say-
ing that the method in question was “as described pre-
viously”. Only after following four references, and going
back almost 15 years, is the alleged protocol uncovered -
and often there are undocumented modifications along
the way.
We are not the first to call for standardization of pro-

tocol descriptions. In recent work, Soldatova et al. [9]
make an excellent case for the need to formalize biology
protocols and propose an ontology called EXACT for
doing so. EXACT offers a detailed breakdown of each
action in the laboratory, resulting in a description that is
considerably more verbose than the original (we offer a
detailed comparison to EXACT later). The MIBBI pro-
ject (Minimal Information for Biological and Biomedical
Investigations) develops a set of checklists that represent
the minimal information needed to capture various
classes of experiments [10]. The journal BMC Bioinfor-
matics recommends that authors follow the MIBBI
guidelines in reporting their protocols. While specific
standards such as MIAME (Minimal Information About
a Microarray Experiment) have gained considerable trac-
tion, there does not exist a widely used MI-standard for
the less structured domain of molecular biology proto-
cols, which is our focus in this paper. There are also
several standardization efforts underway in the context
of systems biology [11] and synthetic biology [12],
though the current focus of these communities is in
standardizing the descriptions of genes, models, and bio-
logical parts rather than experimental protocols.
There has also been prior work on formalizing proto-

cols for the sake of automation. King et al. [13] devel-
oped a “robot scientist” that directs laboratory
experiments using a high-level programming language;
however, the language does not aim to be portable to
automation platforms other than the one used in the
research. In prior work, we developed a simple program-
ming language for toy protocols based on mixing and
storage, and mapped it to diverse microfluidic devices
[14]; however, it is not powerful enough to describe rea-
listic protocols. Amin et al. [15] built on this work in
proposing AquaCore, an architecture for microfluidics
that includes an instruction set architecture (ISA) for
expressing real protocols. However, like the robot scien-
tist, it is specialized for execution on a single platform,
and does not express the logical steps needed to repro-
duce an experiment in another laboratory.
In this paper, we advance this body of work by pro-

posing (to our knowledge) the first programming lan-
guage that can describe realistic biology protocols while
focusing only on their logical functionality, rather than
their mapping to any given machine. In other words,
the language serves the same role as ontologies such as
EXACT and MIBBI in standardizing the description of

protocols, though it is also suitable for automation. As a
platform for standardizing protocols, a programming
language has many advantages over a checklist or an
ontology. It allows the use of standard modularity
mechanisms, such as procedures, classes, and packages,
to define reusable steps that can be called from multiple
protocols (we demonstrate such reuse in our results).
One can naturally parameterize a program, enabling dif-
ferent configurations to be activated with very small
changes. Programs admit simple checks, such as type
checking, which can ensure that protocols are well-con-
structed. Many scientists are already familiar with the
basic principles and practice of programming, and have
access to programming tools (for editing, documenting,
testing, debugging, etc.) that would otherwise need to be
built from scratch. Finally, programs provide the short-
est path to automation, as they can potentially run on
emerging automation platforms. They are also straight-
forward to simulate for testing and educational purposes
on an ordinary computer.
Our vision is to change the way that scientific proto-

cols are communicated: in scholarly publications, can
we replace the English-language description of experi-
mental methods with a computer program? Scientists
could then download the code and easily replicate the
experiment, either via automatic execution or translation
to human-readable steps.

Results and Discussion
An overview of our system, which is called BioCoder,
appears in Figure 1. BioCoder is implemented as a C++
library, enabling users to author new and existing proto-
cols by translating them into a stylized C++ program. In
order to make the coded protocols useful in the labora-
tory, BioCoder provides an automatic translation of the
program to a human-readable, English-language
sequence of steps (similar to the original protocol
description, but with more standardized terminology). It
also emits a graph of the protocol to help users visualize
the steps. A detailed tutorial on how to use BioCoder is
available online [16]. While BioCoder is also suitable for
automation, this has yet to be demonstrated, and in this
paper we focus on its use in standardization.
We proceed by describing the details of the BioCoder

language, as well as our efforts to validate that the

New and
existing

protocols

Translation to
BioCoder

BioC
prog
(in C(manual)protocols (in C(manual)

Human-readable

Analysis of
BioCoder

Coder
gram
C++)

steps (in English)

Graph of protocol
(automatic)C)

Automatic execution
(future work)

(automatic)

Figure 1 Overview of the BioCoder system.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 2 of 13

language provides an accurate representation of real biol-
ogy protocols. We have implemented 66 protocols in Bio-
coder; for the most complex of these protocols
(manipulation of plant DNA), we demonstrate an end-to-
end, real-world usage scenario whereby a biologist per-
formed the protocol (previously unfamiliar to her) using
the BioCoder-generated steps as her only reference. To
the best of our knowledge, this represents the first human
execution of a protocol that originated from a standar-
dized, programmed description. We also validate the
usability of BioCoder as a programming tool via a case
study of two undergraduates who were previously unfami-
liar with the language. We close by discussing practical
applications of BioCoder, from identifying and resolving
ambiguous protocols, to its role in automation, laboratory
information systems, and education.

The BioCoder Language
In this section we describe the details of the BioCoder
language. We start with an overview of the system,
before highlighting the most interesting aspects of the
design: standardizing ad-hoc language, separating com-
ments from instructions, supporting symbolic volumes,
improving readability of text output, and timing con-
straints. We close with a brief discussion of the imple-
mentatin of BioCoder itself.
Overview
The ultimate goal of BioCoder is to enable biologists to
express any protocol in a complete and unambiguous
way, that is suitable both for automation (by machines)
as well as manual execution (by humans). As a first step
towards this vision, in this paper we limit our scope in
two ways. First, we focus only on the domain of molecu-
lar biology, rather than encompassing the full complex-
ity of arbitrary protocols. Second, as it remains an active
area of research to integrate all of the functions of a
biology lab in an automated machine, we focus our
attention on improving the reproducibility of experi-
ments by human biologists. This allows us to decouple
our language research from the progress of laboratory
automation systems (though we do review early results
towards automating the language in a later section).
The design of BioCoder is driven by two rules. First,

protocols written in the language should not depend on
the setup of any given laboratory. They should describe
the logical steps needed, rather than specific locations
or pieces of equipment ("fume hood A”). Comparable to
“write-once, run anywhere” programming languages
such as Java, which are portable between diverse com-
puter platforms, this rule ensures that protocols can be
easily reproduced in different laboratories. Second, the
language should be suitable for automation (when hard-
ware support is available). This implies that all of the
information needed to execute the protocol should be

precisely encoded in BioCoder instructions alone. The
program should be free of any English-language text
that would require human interpretation for correct
execution.
One of the first decisions facing any designer of a

domain-specific language is whether to build the lan-
guage from scratch, or whether to embed it within an
existing programming language [17]. Both approaches
have their merits; while defining a fresh language allows
customizing the syntax and semantics to the domain of
interest, piggybacking on another language leverages
programmers’ existing familiarity with that language and
allows interoperation with existing libraries and tools.
As we anticipate that learning a new language would
represent a barrier for many biologists, we choose to
embed BioCoder within an existing language: C++.
(Users of BioCoder do not need to understand the com-
plex features of C++; our code is legal C with the excep-
tion of function overloading, which simplifies
programming.) We choose C/C++ because they remain
the 1st and 3rd most popular languages in the world
today [18], and C is often the first language of instruc-
tion in a collegiate environment. While it could also be
useful to port BioCoder to other language environments
(such as Perl or Python), this exercise would be straight-
forward given the ideas developed in this paper. Our
design decisions and lessons learned are independent
from the C/C++ environment.
In embedding BioCoder within C++, we borrow all of

the control flow and modularity mechanisms of C++
while assigning special meaning to a set of BioCoder-
specific functions (see Figure 2). In this sense, the cur-
rent version of BioCoder can be thought of as a library
rather than a language, though we prefer to think of it
as a language as it provides a self-contained vocabulary
for describing the steps of a biology experiment. We
devote the rest of this paper to the BioCoder functions,
which are used to describe the steps of a biology proce-
dure. Users of BioCoder can of course leverage the addi-
tional constructs of C++ to achieve goals such
parameterization, functional abstraction, etc., which are
key to enhancing the scalability, readability, and reusa-
bility of the protocols.
Example BioCoder program The core functions of Bio-
Coder are tabulated in Figure 2. Because detailed docu-
mentation for each instruction is available online [19],
here we introduce the language by way of an example.
Figure 3 shows an excerpt from a protocol for plasmid
DNA extraction [20]. The program is written in ordin-
ary C++, and links to a BioCoder library. The BioCoder
analysis (implemented as a runtime system) converts the
program to a sequence of human-readable instructions
(Figure 4) as well as a graphical visualization of the pro-
tocol (Figure 5).

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 3 of 13

The example program (Figure 3) starts by declaring
the materials that are used throughout the protocol.
These include biological substances such as fluids
(reagents, solutions, etc.) and solids (cells, powders,
etc.), as well as objects such as containers, plates,
slides, and columns. Fluids are most commonly
declared without a volume, in which case they represent
a renewable stock. A fixed volume of fluid can be iso-
lated by measuring it into a container. Thereafter, all
operations on the fluid sample are written in terms of
the container; for example, the centrifuge command has
an argument of type Container, but not of type
Fluid. Manipulating containers as the primary objects
of interest allows the system to generate more readable
instructions for use in the laboratory. However, in an
automated platform, containers may not have a direct
analog, in which case they can be ignored by the run-
time system and treated merely as wrappers for fluids of
interest. Automated platforms such as microfluidic
chips may also require different volumes than human

Book-keeping
instructions
start_protocol()
end_protocol()
first_step()
next_step()
optional_step()
first_option()
next_option()
end_option()
first_sub_step()
next_sub_step()
parallel_step()
comment()
to_do()
repeat()
name_sample()
name_container()
name_plate()

Measurement
measure_fluid()
measure_solid()
measure_prop()
add_to_column()
add_to_slide()
collect_tissue()
plate_out()
transfer()

Temperature
& storage
incubate()
store_for()
set_temp()
store_plate()
thermocycler()
thermocycler_anneal()
pcr_init_denat()
pcr_final_ext()
inoculation()
incubate_plate()
invert_dry()
dry_pellet()
dry_slide()

Detection & analysis
ce_detect()
electrophoresis()
facs()
measure_fluorescence()
mount_observe_slide()
sequencing()
electroporate()
weigh()
cell_culture()
transfection()

Symbolic
manipulation
set_value()
assign()
add()
divide()
subtract()
multiply()

Centrifugation
centrifuge()
centrifuge_pellet()
centrifuge_phases_top()
centrifuge_phases_bottom()
centrifuge_column()
centrifuge_flow_through()

Declaration
of resources
new_fluid()
new_solid()
new_container()
new_plate()
new_slide()
new_symbol()
new_column()

Timing
wait()
store_until()
use_or_store()
time_constraint()

Disposal
discard()
drain()

Combination
& mixing
combine()
combine_and_mix()
dissolve()
invert()
pipet()
resuspend()
tap()
vortex()
vortex_column()
incubate_and_mix()
mixing_table()
mixing_table_pcr()
immerse_slide()
remove_slide()
wash_slide()
homogenize_tissue()
wash_tissue()

Figure 2 BioCoder instructions. Function parameters are not
shown.

void main() {

 // start protocol
 start_protocol("Plasmid DNA Extraction - Miniprep (Excerpt)”);

 // declare fluids
 Fluid medium = new_fluid("Rich medium (LB, YT, or Terrific
 medium) containing appropriate antibiotic",
 vol(2, ML));
 Fluid sol1 = new_fluid("Alkaline Lysis Solution I",

"50 mM Glucose, 25 mM Tris-HCl
 (pH 8.0), 10 mM EDTA (pH 8.0)");
 Fluid sol2 = new_fluid("freshly prepared Alkaline Lysis
 Solution II","0.2 N NaOH, 1% SDS (w/v)");
 Fluid sol3 = new_fluid("Alkaline Lysis Solution III",

"5 M sodium acetate, glacial acetic acid");

 // declare solids
 Solid bacteria =

new_solid("a single colony of transformed bacteria");

 // declare containers
 Container flask = new_container(FLASK, medium);
 Container microfuge_tube =

new_container(STERILE_MICROFUGE_TUBE);
 Container sterile_microfuge_tube =

new_container(STERILE_MICROFUGE_TUBE);

 // step 1
 first_step("Preparation of cells");
 inoculation(flask, bacteria, 37, time(12, HRS), 1);

 // step 2
 next_step();
 measure_fluid(flask, vol(1.5, ML), microfuge_tube);
 centrifuge_pellet(microfuge_tube,
 speed(SPEED_MAX, RPM), 4, time(30, SECS));
 comment("Leave the pellet as dry as possible.");

 // step 3
 next_step("Lysis of Cells");
 measure_fluid(sol1, vol(100, UL), microfuge_tube);
 resuspend(microfuge_tube);

 // step 4
 next_step();
 measure_fluid(sol2, vol(200, UL), microfuge_tube);
 invert(microfuge_tube, 5);
 comment("Do not vortex!");
 store(microfuge_tube, ON_ICE);

 // step 5
 next_step();
 measure_fluid(sol3, vol(150, UL), microfuge_tube);
 tap(microfuge_tube, PPT_STOPS_STICKING);
 store_for(microfuge_tube, ON_ICE, time_range(3, 5, MINS));

 // step 6
 next_step();
 centrifuge_phases_top(microfuge_tube,
 speed(SPEED_MAX, RPM), 4,
 time(5, MINS), sterile_microfuge_tube);

 // Steps 7-13 omitted for brevity
 // (Phenol-chloroform extraction and Ethanol precipitation)

 end_protocol();
}

Figure 3 BioCoder example. Example BioCoder code for plasmid
DNA extraction (miniprep). Steps 7-13 are omitted for brevity.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 4 of 13

operators; this is made possible by using symbolic
volumes (detailed later).
The text output (Figure 4) of BioCoder represents an

equivalent, human-readable version of the underlying
protocol. Only BioCoder instructions are translated to
English; if the original program also includes native C++
instructions (such as loops, if statements, arithmetic,
etc.), they will be executed during the translation to Bio-
Coder and will not appear in the text version. This allows
programmers to use a single, parameterized program to
emit multiple variations of a protocol in English.
BioCoder’s graphical output (Figure 5) illustrates all of

the operations in the protocol as well as the depen-
dences between them. The graph can optionally include

intermediate nodes for each container, as well (though
this is disabled, for brevity, in the figure). Operations
are colored according to the estimated time required to
perform them; warmer colors indicate more time-con-
suming steps.
The BioCoder system represents a work in progress,

and we look forward to engaging the broader commu-
nity in guiding its future direction. Developing a stan-
dard for biology protocols will require a concerted effort
on the part of many institutions, and we are committed
to an open development process. We have released the
source code for BioCoder online [19].
In the remainder of this section, we highlight some of

the most interesting aspects of BioCoder, with an eye
towards generalizable techniques that may also apply to
future language designs.
Standardizing Ad-Hoc Language
One of the challenges of formalizing biology protocols is
translating casual, ad-hoc language into a precise and
quantitative scale, while maintaining the flexibility inher-
ent in the original protocol. One example is mixing:
there are many words for “mix” in the English language,
and few of them have escaped mention in the pages of a
biology journal. To address this, we establish a numeric
scale for mixing intensity, with each point correspond-
ing to one or more common actions: 1) tap, 2) stir, 3)
invert, and 4) vortex/resuspend/dissolve. In other words,
we judge the differences between the first three actions
(tap, stir, invert) to be significant, while the other
actions (vortex, resuspend, dissolve) are interchangeable
with respect to mixing intensity. This four-point scale is
used in every call to the combine_and_mix instruc-
tion in BioCoder. (For convenience, BioCoder also pro-
vides separate instructions for tapping, vortexing, and so
on, but they are also translated to this scale.) If a vendor
is implementing runtime support for BioCoder on an
automated platform, they must respect the contract that
level-1 mixing (for example) is comparable in intensity
to tapping a tube.
A similar approach is needed for phrases involving

temperature ("ice cold”, “on ice”, “boiling water”, etc.) as
well as time (e.g., “overnight”). A key aspect of translat-
ing ambiguous language to a quantitative scale is that it
is important not to overly constrain the specification of
the program. If the original protocol could tolerate
small variations in temperature or time, then the person
or machine that is executing the protocol should enjoy
the same flexibility.
Separating Comments from Instructions
One interesting difference between the description of
biology protocols and the description of computer pro-
grams is that, in the current descriptions of protocols,
many statements are non-essential to the successful
completion of the experiment. Rather, the core

Plasmid DNA Extraction – Miniprep (Excerpt)

Solutions/reagents:

o Rich medium (LB, YT, or Terrific
medium) containing appropriate antibiotic

o Alkaline Lysis Solution I
(50 mM Glucose, 25 mM Tris-HC
 (pH 8.0), 10 mM EDTA (pH 8.0))

o freshly prepared Alkaline Lysis Solution II
(0.2 N NaOH, 1% SDS (w/v))

o Alkaline Lysis Solution III
(5 M sodium acetate, glacial acetic acid)

o a single colony of transformed bacteria

Equipment:

o Incubator
o Centrifuge
o Sterile 1.5-ml

microcentrifuge
tubes

Steps:

1. Preparation of cells
Inoculate 2 ml Rich medium (LB, YT, or Terrific medium)
 containing appropriate antibiotic with a single colony of
 transformed bacteria and incubate with shaking for

12 hrs (overnight) at 37°C.

2. Measure out 1.5 ml of culture into sterile 1.5-ml
 microcentrifuge tube.
Centrifuge at maximum speed for 30 secs at 4°C; gently
 aspirate out the supernatant and discard it.
Leave the pellet as dry as possible.

3. Lysis of Cells
Add 100 µl of Alkaline Lysis Solution I.
Resuspend pellet by vortexing or by shaking vigorously.

4. Add 200 µl of freshly prepared Alkaline Lysis Solution II.
Close the tube tightly and invert the tube 5 times.
Do not vortex!
Store the tube on ice.

5. Add 150 µl of Alkaline Lysis Solution III.
Close the tube tightly and gently mix the contents by inverting
 the tube until precipitate stops sticking to walls of the tube.
Store the tube on ice for 3 - 5 mins.

6. Centrifuge at maximum speed for 5 mins at 4°C and aspirate
 out the top layer.
Discard bottom layer.

Figure 4 BioCoder text output. Auto-generated description of a
plasmid DNA extraction protocol, which was produced from the
BioCoder code in Figure 3.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 5 of 13

instructions are interleaved with explanations, warnings,
and reminders that are useful for humans, but could be
safely ignored if one was following the real instructions
as precisely as a computer.
For example, consider the phrase “do not vortex!”,

which appears frequently in biology protocols, including
step 4 of our running example. How does one formalize
this instruction in a program? While we could simply
discard the statement for the sake of automation, we
also aim to foster adoption for realistic use by biologists,
who might prefer not to drop such language from the
text instructions emitted by BioCoder (especially if it
aids in reproducing an experiment).
Our approach to this issue is to separate the concepts

of instructions (which are needed even for a flawless
machine to successfully complete the protocol) and
comments (which are non-essential). Comments are
indicated using the BioCoder comment function, which
takes a free-form English language string. This does not
violate our original design rules, as this string can be
ignored from the standpoint of automation.
Still, one of the principal challenges in translating pro-

tocols to BioCoder is drawing the line between instruc-
tions and comments. For example, in step 2 of the
miniprep protocol (Figure 3), the textbook source pre-
scribes to “leave the pellet as dry as possible”. While
this statement sounds helpful, since the preceding cen-
trifugation and aspiration should have the same effect,
we consider it to be non-essential and thus implement
it as a comment.

Symbolic Volumes
It is common for biology protocols to contain sym-
bolic volumes, where the experimenter is expected to
calculate the actual volumes needed based on the spe-
cific circumstances at the time. While such calcula-
tions can easily be embedded within a computer
program, extra care is needed to preserve the symbolic
elements when translating back to an English-readable
description.
To address this issue, BioCoder includes a type Sym-

bol that represents an unknown quantity. Variables of
this type can optionally be assigned a numeric value, for
the sake of automatic execution and also for generating
text instructions for a specific values of the parameters.
However, if no value is assigned, the variable appears as
a symbol throughout the emitted instructions. BioCoder
also supports arithmetic on symbols (via predefined
functions such as add and subtract), which lead to
symbolic formulas in the English-language description.
An example of this functionality appears in Figure 6.
Symbolic volumes could also allow a single program

to seamlessly transfer between automation platforms
that have different capacities for fluids (e.g., a macro-
and micro-fluidic device). If all symbolic volumes are
defined in proportion to a baseline symbol, then the
machine could scale the value of that free variable such
that all of the fluid volumes in the program are a good
match for the machine. Such an analysis could rely on
automatic volume management [21] to estimate the
overall volume demands of a program.

medium+colony

inoculation (Duration: 12 hrs, Temp: 37)

measure fluid (1.5 ml)

centrifuge pellet (Duration: 30 secs, Speed: max, Temp: 4)

mix

mix

Alkaline Lysis Solution I

measure fluid (100 ul)

store (Temp : on ice)

Alkaline Lysis Solution II (freshly prepared)

measure fluid (200 ul)

mix

store for (Duration: 3-5 mins, Temp: on ice)

Alkaline Lysis Solution III

measure fluid (150 ul)

centrifuge phases -- top phase (Duration: 5 mins, Speed: max, Temp: 4)

Figure 5 BioCoder graphical output. Auto-generated task graph of a plasmid DNA extraction protocol, based on the BioCoder code in Figure
3. Tasks are colored according to the amount of time required to complete them (warmer colors take more time).

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 6 of 13

Improving the Readability of Text Output
Much of the effort that we invested in BioCoder went
towards ensuring that the English-language output clo-
sely resembles that of a standard biology protocol. The
translation works as a runtime system, in which the
program is executed and each call to a BioCoder func-
tion generates a corresponding text output. This
implies that ordinary C++ operations (such as control
flow and arithmetic) are evaluated once, during the
translation to text, rather than being emitted as textual
instructions for the biologist to follow. For example, if
one writes a loop (from 1 to 10) around a BioCoder
instruction, then that instruction will be emitted ten
times in the textual version, rather than preserving the
loop construct in the text. While we considered
extending BioCoder with control flow instructions
(such as loops and if/then/else statements), we did not
find any application of such instructions across our
benchmark suite. Instead, the common case is that a
protocol is parameterized according to a given condi-
tion (e.g., gram-positive or gram-negative bacteria);
using our system, biologists can toggle this parameter
in the C++ program and emit two alternative protocols
to be followed in the laboratory.
For the textual output to appear natural to a human,

it is important to keep track of neighboring instructions
and to emit code that uses simplifications and pronouns
where appropriate. For instance, if two consecutive

instructions are measuring fluids into the same con-
tainer, the second instruction is generated as (for exam-
ple in Figure 4) “Add 100 μl of Alkaline Lysis Solution”.
In other words, the container used as the target of the
instruction is unambiguous in context, and can be
omitted to reduce the verbosity of the text.
In further improving the readability of textual instruc-

tions, we had an interesting point of departure from
standard programming language design. Typically, pro-
gramming language designers aim to define a minimal
set of orthogonal primitives that, when composed in
sequence, can aptly describe the full range of computa-
tions. For example, the instruction “multiply-add” is
rarely included in a language, since it can be replaced
with two simpler instructions. However, when designing
a language to facilitate translation to the English lan-
guage, it is very difficult to assemble sequences of small
primitives into natural English text, especially when they
can be summarized by a different high-level phrase.
An example of this phenomenon is that of a mixing

table, which frequently appears in biology protocols (see
Figure 6). While one could encode a table of mixtures
as a series of mix instructions, it would be very difficult
to recover the simple structure of the table when trans-
lating those instructions back to English. Thus, we
introduced a mixing_table instruction in the lan-
guage (also illustrated by example in Figure 6).
This instruction does not complicate the mapping of

BioCoder to automatic platforms, as it naturally decom-
poses into lower-level mix instructions. However, by
encapsulating the high-level semantics, we facilitate the
translation to English and simultaneously provide an
intuitive and concise interface for programmers to use.
Other examples of compound instructions include

combine_and_mix, incubate_and_mix, and
mount_observe_slide.
Timing Constraints
Timing constraints are an important part of biology proto-
cols. Execution of a protocol may require a minimum
delay between steps (cell growth, enzyme digest, denatura-
tion, etc.), a maximum latency between steps (avoid preci-
pitation, photobleaching, etc.), or a precise interval
between steps (regular measurements, synchronized steps,
etc.) We capture these constraints using the wait and
time_constraint instructions in BioCoder. Constraints
may be expressed relative to another instruction (e.g., wait
1 minute until the next step), or can be attached to a con-
tainer (e.g., wait 1 minute before any instruction uses this
container). Attaching constraints to containers allows pre-
cise timing across procedure boundaries, which is other-
wise difficult to specify in terms of instruction pairs. We
also introduce a use_or_store instruction, which indi-
cates that a container should be stored at a certain tem-
perature (e.g., on ice) if it is not used within a given

// Omitted for brevity: declarations of pcr_mix, vf2, vr, colony, water, & tube

Symbol x = new_symbol("X", "concentration of primers (mole/ l)");

first_step("PCR mix");
Fluid fluid_array[5] = {pcr_mix, vf2, vr, colony, water};
Symbol y = divide(vol(0.125, UL), s_vol(x));
Volume* volume[5] = {vol(9, UL), s_vol(y), s_vol(y), vol(1, UL), vol(XVAL, UL)};
char* tubes[1] = {"Colony PCR"};
mixing_table(2, 6, fluid_array, tubes, volume, vol(20, UL), tube1);

Parameters:

o X - concentration of primers (μmole/μl)

Steps:

1. PCR mix
Use the following table as a checklist for preparing the reaction in sterile
0.6-ml microcentrifuge tube (1):

PCR SuperMix
High Fidelity

VF2
primer

VR
primer

colony
suspension

de-ionized
water

Colony
PCR

9 μl 0.125/X 0.125/X 1 μl
Make up
the volume
to 20 μll l

Figure 6 BioCoder example. Example of symbolic volumes and
high-level mixing instructions in BioCoder. The BioCoder code is
shown at top, and the auto-generated text version is shown at
bottom.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 7 of 13

amount of time. The store_until instruction also
allows the timing to depend on a predefined list of events.
Implementation of BioCoder
As mentioned previously, BioCoder is implemented as a
C++ library that is open source and freely available [19].
The library consists of 5,800 non-comment non-blank
lines of C++ code, which is richly documented using the
Doxygen [22] tool (there are 2,400 lines of comments
and embedded documentation). To simplify the system,
most of the source base is valid C code, with all of the
BioCoder functions existing in a global namespace.
Users can easily extend the system by adding new types
or functions to this list.
We depend on the features of C++ in two ways.

First, types such as Volume are implemented as a class
hierarchy, where the Volume base class is extended
by subclasses that represent mimimum, maximum,
approximate, symbolic, and ranges of volumes; a simi-
lar class hierarchy exists for the Time and Speed types.
Object inheritance enables all BioCoder functions to
accept different kinds of volumes, times, and speeds,
without having to deal with each type separately. Sec-
ond, we utilize function overloading in C++ to provide
many different versions of the same BioCoder function
(for example, to configure a thermocycler for various
programs). We believe this simplifies usage of the
library by non-expert programmers.

Validation of the Language
However appealing the design of a programming lan-
guage, the ultimate impact is dictated by its ability to
concisely describe the programs of interest, as well as its
ease of use by programmers. Evaluating a programming
language for biology protocols poses unique challenges,
because - unlike computer programs - there does not
yet exist a commodity platform that can be used to
automatically execute a protocol and check that its out-
put is correct. Thus, we rely on human validation of
coded protocols, both via execution in the laboratory as
well as manual inspection, to show that BioCoder pro-
vides a complete, unambiguous, and correct description.
Our evaluation of BioCoder proceeds in three steps.

First, we show that it is possible to describe a broad
range of molecular biology protocols in the language.
Then, we argue that the formal protocols are correct
using evidence from laboratory experiments, manual
inspection, and automated tools. Finally, we explore the
usability of the language for real biologists, by observing
their first experience implementing protocols in
BioCoder.
Benchmark Suite
The BioCoder benchmark suite appears in Figure 7. We
have implemented a total of 66 protocols in the lan-
guage, drawing from diverse sources such as textbooks,

academic laboratories, published papers, commercial
kits, and http://OpenWetWare.org (an online wiki for
sharing biology protocols). Protocols range in size from
12 BioCoder instructions (PNK Treatment of DNA
ends) to 225 BioCoder instructions (CTAB DNA Plant
Miniprep), with an average length of 52 instructions.
The eleven protocols drawn from the Molecular Cloning
textbook rely heavily on a shared library of common
procedures such as phenol chloroform extraction and
ethanol precipitation; these functions consist of 83 Bio-
Coder instructions and are not included in the table.
The suite represents over 6600 lines of code.
The usage of BioCoder instructions according to their

functionality is shown in Figure 8. Approximately 62%
of instructions are used for either book keeping (indicat-
ing new steps) or declaring resources. Of steps that
translate to experimental actions, the most common are
measurement (13%), temperature and storage (10%),
combination and mixing (8%), and centrifugation (5%).
Our current benchmarks make sparser use of instruc-
tions for detection, timing, disposal and symbolic
manipulation.
Comparison to EXACT. Our “yeast transformation”

protocol was selected to enable a comparison to
EXACT [9], which uses the same protocol as a case
study. Both versions of the protocol are implemented
from the original source [23]. While we implement the
entire protocol, the EXACT protocol (available online
[24]) covers only the first half, which is the preparation
of competent cells; thus, we restrict our comparison to
that portion.
The most striking difference between BioCoder and

EXACT is the verbosity of the description: EXACT
requires 704 (non-blank) lines to describe the protocol,
while BioCoder requires 46. While both languages pro-
vide a complete description of the protocol, EXACT
provides more fine-grained steps; for example, it details
the preparation of YPD agar and yeast colony plates,
whereas BioCoder uses a single “inoculate” instruction.
One instruction in BioCoder that is currently missing
from the EXACT description is that of alternative steps;
in this protocol, BioCoder can express the option of
inoculating with either YPD or SC medium.
We view BioCoder as being complementary to

EXACT. In fact, the EXACT authors note that “we
would like a tool that can translate from a fully specified
EXACT protocol into a summarized human-friendly
readable format” [9]. BioCoder represents one such
design point. In future work, it could be interesting to
consider closer integration between the two languages.
Validation in the Laboratory
To show that BioCoder provides a faithful representa-
tion of a protocol, we conducted an end-to-end experi-
ment whereby a student in a biology laboratory

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 8 of 13

http://OpenWetWare.org

Figure 7 BioCoder benchmarks. The number of BioCoder instructions used in each benchmark is shown at right.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 9 of 13

conducted a new, non-trivial protocol while using the
BioCoder version as her only reference. Our specific
methodology was as follows:

1. We obtained from an academic biology laboratory
a customized description of a protocol for manipu-
lating plant DNA. The lab has been using this proto-
col successfully for several years.
2. We translated the protocol into BioCoder, and
automatically generated a human-readable version.
We sent this protocol back to the laboratory.
3. An undergraduate intern, who had never con-
ducted protocols on plants, executed the protocol
using the BioCoder description as her only reference.

The protocol used for this exercise (labeled “CTAB
DNA Plant Miniprep” in Figure 7) is the most complex
in our benchmark suite. It involves extracting plant
DNA, amplifying a gene, cloning the gene into a plas-
mid, transformation of bacterial cells with the plasmid
and finally, bacterial plasmid miniprep. It requires
approximately one week to execute in the laboratory.
The result of our experiment was successful: by fol-

lowing only the BioCoder protocol, the student obtained
a valid result, comparable to previous interns who had

access to the original description. (We relied on the jud-
gement of the supervising professor to gauge whether
the student’s progress was comparable to prior interns.)
This provides evidence that the BioCoder description of
the protocol captured all of the details necessary to exe-
cute it in the laboratory.
It is important to emphasize that the student conduct-

ing the experiment did not have specific prior knowl-
edge of the protocol under consideration. The student
was a second-year undergraduate, and while she had
done similar protocols with bacteria, this was her first
exposure to manipulating plant DNA. While the student
did have access to a mentor in the laboratory, the men-
tor indicated that the student did not have any confu-
sion with respect to the protocol (her questions focused
on how to operate laboratory equipment, understanding
the rationale for adding specific reagents, or checking
whether certain results were expected).
Validation via Manual Inspection
In addition to executing a protocol in the laboratory, for
seven protocols we asked a third-party expert (in most
cases the original author of the protocol) to inspect the
text generated by BioCoder and to compare it to the
original. As in the previous section, we obtained the ori-
ginal protocol description from a laboratory and trans-
lated it to BioCoder ourselves, before generating a
human-readable version for inspection by the expert.
In all cases, the experts deemed the BioCoder version

to be a complete and faithful representation of the origi-
nal, and would not object to using it as the primary
reference. In the case of the protein in-situ localization
protocol, our collaborating PI commented: “The proto-
col reads crisper and easier - will be useful for the
beginners.”
Validation via Automated Tools
When protocols are written as computer programs, it
also becomes possible to perform simple consistency
checks using automated tools. As a first step in this
direction, we implemented an overflow/underflow detec-
tor, which aims to determine whether a protocol ever
attempts to fill a container beyond its capacity, or to
remove more volume from a container than is currently
present. This check is simple to perform for a given
value of the program parameters, by simulating the pro-
tocol’s execution while keeping track of the volume pre-
sent in each container. Some instructions (such as
centrifugation) may lead to an unknown volume, in
which case both extremes can be tracked to see if there
is any risk of overflow or underflow in the laboratory.
We ran this analysis over all of the programs in our

benchmark suite, as well as programs implemented by
biologists as part of our case study (described in the
next section). The analysis reported a subtle bug that
was common to all of the biologists’ codes for miniprep,

40%

50%

30%

40%

50%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

Figure 8 Instruction usage. Breakdown of BioCoder instructions as
used in our benchmarks.

3. Add 1.5 vol. CTAB to each MCT and vortex. Incubate at
65° C for 10-30 mins.?

4. Add 1 vol. phenol:chloroform:isoamylalcohol (48:48:4) and
vortex thoroughly.

5. Centrifuge at 13000g at room temperature for 5 mins.

6. Transfer aqueous (upper) layer to clean MCT and
repeat the extraction using chloroform:isoamyalcohol (96:4).

Figure 9 Resolving ambiguity. Example ambiguity in a laboratory
protocol. While biologists often interpret step 6 as referring to step
4, the intended reference is to step 3.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 10 of 13

as well as our own reference versions. The problem
stems from usage of the optional_step instruction:
when a fluid is transfered to a new container in an
optional step, the program variable pointing to the origi-
nal container must be updated to point to the new one,
so that future instructions will use the right container
whether or not the optional step was taken. We had ori-
ginally omitted this update, which caused subsequent
instructions to operate on an empty container. The ana-
lysis was very useful in exposing this problem.
The analysis also revealed a bug in our language itself,

whereby containers could be initialized to hold a fluid of
unknown volume. This has since been fixed by requiring
a volume for fluids that accompany a container’s
initialization.
Validating Ease of Programming: A Case Study
In order to judge the usability of BioCoder as a tool for
biologists, we performed a small user study in which we
asked two undergraduate students (who had never used
BioCoder) to translate a set of protocols from English-
language descriptions into BioCoder code. The students
were both final-year undergraduates in a biology pro-
gram (with a dual-major in engineering); user 1
described his understanding of the C language as “fair”
while user 2 described it as “good”. We provided a 1.5-
hour training session on BioCoder, including example
protocols and their text output. We then held a 1-hour
practice session with each user individually, where they
implemented an example protocol while asking us as
many questions as they liked. Finally, we held a test ses-
sion, where users had access to the documentation,
sample programs, and BioCoder-to-text converter, but
were discouraged from asking questions. We asked
them to implement two miniprep protocols: one that
was generated as the text output from BioCoder, and
one that was written by a third-party. We expected that
the protocol that was previously emitted from BioCoder
would be easier to re-implement.
Overall, the outcome of the study was encouraging,

with both users producing a result equivalent to our
own implementation for at least one protocol. (We later
found that our own implementation had a subtle bug
that was also mirrored in the users’ codes, as detailed in
the previous section.) Apart from this issue, as well as a
pair of numerical typos by user 1 (20 μL in place of 50
μL, 2 minutes in place of 5 minutes), both users imple-
mented a correct version of the first protocol (miniprep
as emitted by BioCoder). The BioCoder instructions
chosen by the users were exactly the same as our refer-
ence version, with one exception: user 1 called “vortex”
in place of “resuspend” (these have equivalent meanings
for automation, though produce different text outputs).
We also noticed minor differences in parameters,
though we have since removed the ambiguity from the

language ("ice cold” vs. “on ice”, and adjusting options
for drying pellets).
The second miniprep protocol was more challenging,

because it originated from an original source rather
than from BioCoder. For this protocol, user 2’s imple-
mentation was equivalent to our own, though user 1
substituted a comment instruction for a centrifuge
instruction, which would prevent his protocol from run-
ning correctly on an automated platform. It seemed that
user 1 misunderstood the comment instruction, as he
also misused it to declare section titles of the text out-
put ("reagents”, etc.) The users’ instructions also had
other differences from our reference version, including
use of store_until in place of dry_pellet and
store_for in place of incubate. However, as in the
case of the first protocol, these differences would only
affect the text output of BioCoder, and still represent an
equivalent protocol as far as automation goes.
In terms of time required, user 1 spent approximately

2 hours on each of the protocols, while user 2 (being
more proficient in C) required 1 hour and 10 minutes
for each. While this is somewhat slow, neither user felt
overwhelmed by the language, and they both expected
that their proficiency would improve with time.

Applications of the Language
Independent of the question of validating the language
is that of application: if BioCoder does provide a faithful
representation of protocols, how could it offer benefits
to biologists? We provide early evidence of gains in
standardization and automation, and describe future
applications in laboratory information systems and
education.
Standardization
Thus far, our experience with BioCoder has led us to
expose and fix three bugs and ambiguities in real labora-
tory protocols. The first of these (excerpted in Figure 9)
is the protocol for plant DNA extraction, which was
being used internally in the laboratory of an academic
partner. Step 6 of the protocol is ambiguous in saying to
“repeat the extraction”, as one could interpret this as a
jump to either step 3 or step 4. In an informal poll of
dozens of biologists, the common interpretation is to
return to step 4; however, upon checking with the origi-
nal author of the protocol, it turns out that one needs
to return to step 3 instead. This is an important ambi-
guity that could change the outcome of the protocol, yet
is entirely due to a simple, unintended slip in English-
language wording. Implemented in BioCoder, the task is
completely unambiguous, as there is no instruction for
“repeating the extraction”.
The second ambiguity arises from a protocol for plant

DNA extraction [25], where Step 7 instructs one to
“wash with chilled 70% ethanol”. The undergraduate

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 11 of 13

student who was performing this step (the same one
who executed our protocol in the laboratory) interpreted
this to mean that the tube containing a pellet should be
filled with ethanol and drained immediately; however,
the actual method requires resuspension of the pellet
via vortexing, followed by centrifugation and draining. A
BioCoder description of this step leaves no room for
mis-interpretation, as the vortexing and centrifugation
are explicit.
Finally, we found two minor bugs in protocols from

an academic lab when translating them to BioCoder. In
a transformation protocol, a microcentrifuge tube was
mis-labeled as a spectrometry cuvette, and in a miniprep
protocol, a 1.5 mL tube was mis-labeled as a 1.5- μL
tube. These protocols had been used in an undergradu-
ate class, which makes it surprising that the error was
not reported (we do not know if it caused confusion in
the class).
In order to have a broader impact on protocol stan-

dardization, we have taken an active role in http://Open-
WetWare.org, a community wiki for sharing biology
protocols. In the molecular biology category, we have
posted a BioCoder version and corresponding text out-
put for every non-trivial protocol that is not missing key
details (33 in total). We hope to engage with the com-
munity to make robust and standardized protocols a
reality.
Automation
One of the most compelling applications of BioCoder is
to enable fully-automatic execution of protocols on
sophisticated platforms (such a microfluidic chips) in
the future. We showed that such automation is tractable
in prior work, where we defined a simpler language
(BioStream) and executed it automatically on diverse
microfluidic chips [14]. BioStream contained only mix-
ing, storage, detection, and I/O primitives, which are
fully supported by many microfluidic chips today. We
anticipate that as the capabilities of such chips evolve,
the task of mapping BioCoder for automatic execution
will not be beyond reach.
Future Applications
We envision several applications of BioCoder beyond
those explored in this paper. One benefit of expressing
protocols as a computer program is that they are amen-
able to automatic scheduling, which could help improve
the utilization of shared equipment in a laboratory set-
ting. Our analysis engine can predict the times at which
a protocol will demand use of each resource - for exam-
ple, the thermocyclers, centrifuges, and microscopes -
which could aid researchers in reserving time on these
machines (or checking for their availability). In a high-
throughput setting, automatic scheduling could also be
used to optimize the timing of parallel experiments, e.g.,

to ensure that all equipment in a pharmaceutical cor-
poration is fully utilized.
While we have focused on the usage of BioCoder in

the context of research, we also foresee several applica-
tions in education. BioCoder can be used to emit differ-
ent descriptions of the same protocol for different levels
of students. For example, for beginners one might gen-
erate a detailed text protocol, including all comments
and perhaps tutorial information on each step (PCR,
centrifugation, etc.). As students progress, the tutorials
and hints can be removed, and the graphical protocol
may serve as the best summary. BioCoder can also be
used to do revision control on protocols; students can
calculate an automatic diff between their protocols
and their peers’, and can track (or rollback) the changes
made to their own methods as they evolve over time. It
may also be possible to use computers at the lab bench
to interactively coach students through their protocols,
assist them in understanding or troubleshooting key
steps, and enable educators to track their progress.

Conclusions
We have presented BioCoder, a language and system for
describing biology protocols in a form that is suitable
for both standardization and automation. To the best of
our knowledge, BioCoder is the first programming lan-
guage that expresses realistic molecular biology proto-
cols in logical terms without undue dependence on the
execution platform. We described the key lessons
learned in designing the language, including standardiza-
tion of ad-hoc language, separation of comments from
instructions, support for symbolic volumes, ensuring
readability of text output, and support for timing con-
straints. We validated the completeness of the language
by implementing over 65 protocols, and demonstrating
the first (to our knowledge) end-to-end experiment that
was conducted by a human using a programmed proto-
col as reference. A small user study suggests that BioCo-
der is accessible to undergraduate students. We look
forward to maintaining an open development process
and working with the community to find practical appli-
cations for BioCoder in improving the reproducibility
and automation of the next generation of biology
protocols.

Acknowledgements
We are very grateful to Utpal Nath, Mansi Gupta, Subhashini Muralidharan,
and Sushmita Swaminathan at the Indian Institute of Science, who provided
validation and execution of BioCoder protocols. We are also indebted to
Aravind Sivakumar and Vishnu Venkatesh for participating in our user study.
We thank Eric Klavins for many helpful conversations, and for suggesting
applications of BioCoder in the classroom. We also thank Eric Klavins and
Douglas Densmore for sharing their laboratory protocols with us.

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 12 of 13

http://OpenWetWare.org
http://OpenWetWare.org

Author details
1Max Planck Institute for Molecular Cell Biology and Genetics,
Pfotenhauerstrasse 108, 01307 Dresden, Germany. 2Microsoft Research India,
196/36 2nd Main, Sadashivanagar, Bangalore, 560080, India.

Authors’ contributions
VA and WT jointly designed the BioCoder language. VA implemented and
refined the language (as well as the example protocols) and evaluated it via
user studies. WT led the preparation of the manuscript. Both authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 4 June 2010 Accepted: 8 November 2010
Published: 8 November 2010

References
1. Hong JW, Quake SR: Integrated nanoliter systems. Nature BioTechnology

2003, 21(10).
2. Gefena O, Balabana NQ: The Moore’s Law of microbiology - towards

bacterial culture miniaturization with the micro-Petri chip. Trends in
Biotechnology 2008, 26(7).

3. Fluidigm: Fluidigm 96.96 Dynamic Array. 2009 [http://www.fluidigm.com/
products/biomark-chips.html].

4. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M,
Lee H, Scuto A, Liu Y, Yang C: In vivo delivery of siRNA to immune cells
by conjugation to a TLR9 agonist enhances antitumor immune
responses. Nature Biotechnology 2009, 27:925-932.

5. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R,
Gabrilovich D, Heller R, Coppola D: Regulation of the innate and adaptive
immune responses by Stat-3 signaling in tumor cells. Nature Medicine
2003, 10:48-54.

6. Niu G, Wright KL, Huang M, Song L, Haura E, James Turkson SZ, Wang T,
Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D,
Jove R, Yu H: Constitutive Stat3 activity up-regulates VEGF expression
and tumor angiogenesis. Oncogene 2002, 21(13).

7. Turkson J, Bowman T, Garcia R, Caldenhoven E, Groot RPD, Jove R: Stat3
Activation by Src Induces Specific Gene Regulation and Is Required for
Cell Transformation. Mol Cell Biol 1998, 18(5).

8. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, Jove R:
Enhanced DNA-Binding Activity of a Stat3-Related Protein in Cells
Transformed by the Src Oncoprotein. Science 1995, 269(5220).

9. Soldatova LN, Aubrey W, King RD, Clare A: The EXACT description of
biomedical protocols. Bioinformatics 2008, 24(13).

10. Taylor CF, et al: Promoting coherent minimum reporting guidelines for
biological and biomedical investigations: the MIBBI project. Nature
Biotechnology 2008, 26(8).

11. Brazma A, Krestyaninova M, Sarkans U: Standards for systems biology.
Nature Reviews 2006, 7:593-605.

12. Endy D: Foundations for engineering biology. Nature 2005, 438:449-453.
13. King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, Muggleton SH,

Kell DB, Oliver SG: Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 2004, 427:247-252.

14. Thies W, Urbanski JP, Thorsen T, Amarainsghe S: Abstraction Layers for
Scalable Microfluidic Biocomputing. Natural Computing 2007, 7(2).

15. Amin AM, Thottethodi M, Vijaykumar TN, Wereley S, Jacobson SC:
AquaCore: A programmable architecture for microfluidics. In Proceedings
of the 34th International Symposium on Computer Architecture. Edited by:
Tullsen DM, Calder B, San Diego. CA: ACM; 2007:254-265.

16. BioCoder tutorial. 2010 [http://research.microsoft.com/en-us/um/india/
projects/biocoder/tutorial/index.html].

17. Mernik M, Heering J, Sloane AM: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys 2005, 37(4).

18. TIOBE Programming Community Index. 2010 [http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html].

19. BioCoder website. 2010 [http://research.microsoft.com/en-us/um/india/
projects/biocoder/].

20. Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual Cold
Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.

21. Amin AM, Thottethodi M, Vijaykumar TN, Wereley S, Jacobson SC:
Automatic volume management for programmable microfluidics.
Conference on Programming Language Design and Implementation 2008.

22. Doxygen documentation system. 2010 [http://www.doxygen.org/].
23. Amberg DC, Burke D, Strathern JN: Methods in Yeast Genetics Cold Spring

Harbor, New York: Cold Spring Harbor Laboratory Press; 2005.
24. Aubrey W: Protocol for the preparation of Saccharomyces cerevisiae

competent cells. 2008 [http://www.aber.ac.uk/~dcswww/Research/bio/dss/
EXACT/yeast_Competent_cells_v1.txt].

25. McNickle GG: DNA extraction from ANY plant tissue. 2008 [http://www.
ualberta.ca/~mcnickle/McNickle_Extraction_Protocol.pdf].

doi:10.1186/1754-1611-4-13
Cite this article as: Ananthanarayanan and Thies: Biocoder: A
programming language for standardizing and automating biology
protocols. Journal of Biological Engineering 2010 4:13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Ananthanarayanan and Thies Journal of Biological Engineering 2010, 4:13
http://www.jbioleng.org/content/4/1/13

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/14520403?dopt=Abstract
http://www.fluidigm.com/products/biomark-chips.html
http://www.fluidigm.com/products/biomark-chips.html
http://www.ncbi.nlm.nih.gov/pubmed/19749770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19749770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14702634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14702634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9566874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9566874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9566874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7541555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7541555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16847461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16306983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14724639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14724639?dopt=Abstract
http://research.microsoft.com/en-us/um/india/projects/biocoder/tutorial/index.html
http://research.microsoft.com/en-us/um/india/projects/biocoder/tutorial/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://research.microsoft.com/en-us/um/india/projects/biocoder/
http://research.microsoft.com/en-us/um/india/projects/biocoder/
http://www.doxygen.org/
http://www.ncbi.nlm.nih.gov/pubmed/18586727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586727?dopt=Abstract
http://www.aber.ac.uk/~dcswww/Research/bio/dss/EXACT/yeast_Competent_cells_v1.txt
http://www.aber.ac.uk/~dcswww/Research/bio/dss/EXACT/yeast_Competent_cells_v1.txt
http://www.ualberta.ca/~mcnickle/McNickle_Extraction_Protocol.pdf
http://www.ualberta.ca/~mcnickle/McNickle_Extraction_Protocol.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	The BioCoder Language
	Overview
	Standardizing Ad-Hoc Language
	Separating Comments from Instructions
	Symbolic Volumes
	Improving the Readability of Text Output
	Timing Constraints
	Implementation of BioCoder

	Validation of the Language
	Benchmark Suite
	Validation in the Laboratory
	Validation via Manual Inspection
	Validation via Automated Tools
	Validating Ease of Programming: A Case Study

	Applications of the Language
	Standardization
	Automation
	Future Applications

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.76333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.76333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

