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Abstract: In cell biology and other fields the automatic accurate localiza-
tion of sub resolution objects in images is by now an important tool. The
signal is often corrupted by multiple forms of noise, including excess noise
resulting from the amplification by an electron multiplying charge-coupled
device (EMCCD). Here we present our novel Nested Maximum Likelihood
Algorithm (NMLA). It solves the problem of localizing multiple overlap-
ping emitters in a setting affected by excess noise, by repeatedly solving
the task of independent localization for single emitters in an excess noise
free system. NMLA dramatically improves scalability and robustness, when
compared to a general purpose optimization technique. Our method was
successfully applied for in vivo localization of fluorescent proteins.
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1. Introduction

With the advent of high time resolution microscopy and advances in the biological toolkit for
microscopy, it has become possible to visualize the movement of cells and of single molecules
inside a live cell [1]. For extracting information from these time-lapse images, it becomes essen-
tial to have the tools to track the motion of biological entities with high accuracy and efficiency.
In cell biology the objects of interest, are often below the resolution limit of the microscope,
appearing only in the form of the system’s point spread function (PSF). Furthermore low light
conditions are employed so as to avoid photo damage and bleaching, making the task even more
challenging (Figs. 1(a) and 1(b)).

A variety of methods have been suggested to address the problem [2] and it has been shown
that the theoretically motivated maximum likelihood (ML) approach to localization has superior
precision [3]. The ML approach is based on a statistical model of the imaging process, which
includes its various noise sources. The most important for biological applications are shot noise,
read out noise and excess noise introduced by stochastic amplification.

The first source to be considered lies at the foundation of image generation: The number
of photons detected in a pixel during an exposure is non deterministic. The resulting effect,
known as shot noise, is especially severe under low light conditions. In general, the number of
photons ni in each pixel i is assumed to follow a Poisson distribution pni(ni;Ei). The mean of
this distribution Ei is the flux at the pixel i, i.e. the expected number of photons detected at the
pixel during an exposure. Ei depends (among other quantities) on the locations of the objects
which are to be localized. We will refer to them as emitters. Their manifestations in the image
will be referred to as blobs. By assuming that the number of photons ni at a pixel can be derived
from the recorded intensity Ii at the pixel, one formulates the probability for the observation of
an image as

M

∏
i=1

pni(ni;Ei), (1)

where M is the number of pixels in the image. Different emitter locations change the expected
photon counts Ei and thus result in different probabilities. The ML estimate in this case is
defined as the emitter locations, which maximize Eq. (1). Over the past years, this scheme has
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Fig. 1. The NMLA tracks proteins in vivo (a) Image of a fission yeast cell expressing dynein
heavy chain tagged with 3 GFPs (Dhc1-3GFP). The white line marks the cell outline, the
green arrowhead marks a dynein molecule. The brightest spot is the spindle pole body.
(b) The movement of dyneins is visualized in consecutive maximum intensity projections
onto the y-axis (see color bar). (c) Schematic representation of the NMLA. The outer loop,
which addresses the excess noise, is depicted in blue while the inner loop, which performs
the localization, is depicted in grey. (d) Scheme of cell with the 2D trace of a dynein (green,
corresponding to the green arrowhead in a) tracked using the NMLA. (e) Projection onto the
y-axis of the traces obtained using the NMLA. The green trace is the path of the molecule
marked in a.

been used for localization in a number of studies, Refs. [3, 4, 5] are some of them.
In a camera with a charge-coupled device (CCD), the signal is additionally corrupted by

additive Gaussian read out noise which poses a severe problem when little light is available.
Cameras with electron multiplying charge-coupled Devices (EMCCDs) can be a remedy. They
reduce the effects of read out noise by amplifying the charge before it is read out. However, the
amplification mechanism introduces yet another kind of noise, referred to as multiplicative or
excess noise. The statistics of the amplification and its consequences regarding ML localization
have been thoroughly discussed by Chao et al. [6]. A simplified model suggested by Basden et
al. in Ref. [7] was recommended for high amplification gains in Ref. [6].

During EMCCD amplification, photo-electrons are shifted through a multiplication register.
According to Basden et al. [7] the number of output electrons Si given a certain number of input
electrons ni approximately follows a discrete version of an Erlang distribution:

pSi|ni
(Si|ni;g) =

Sni−1 exp(− Si
g )

gni(ni −1)!
, (2)

where g is the mean amplification gain, which we will refer to as EMCCD gain. In settings
with low photon counts, such as biology, a high EMCCD gain is beneficial as it leads to better
localization quality [8]. The effects of readout noise become insignificant with high EMCCD
gains and we therefore omit them [4]. Furthermore it will be assumed that the observed signal
in a pixel is identical to the number of output electrons Si. We will use the term signal as
opposed to intensity in the context of this model, where there is no deterministic mapping from
observable pixel output to the number of photons in a pixel.



ML localization in presence of excess noise has been formulated [9] and extensively explored
[6]. We will refer to the resulting estimator as excess noise aware ML estimator. However,
current localization tools are still based on pure shot noise models [5, 10]. When the multiple
emitters in close proximity are to be localized, the search for the ML estimate (excess noise
aware as well as unaware) of their positions is a challenging high dimensional optimization
task. It has not been recognized that the ML localization problem has a structure that allows for
the use of a divide and conquer (DC) strategy to simplify the problem.

Here, we reformulate the optimization task to utilize this property in a novel nested expecta-
tion maximization (EM) algorithm that we refer to as Nested Maximum Likelihood Algorithm
(NMLA), see Fig. 1(c). The EM meta algorithm was introduced by Dempster et al. in Ref. [11]
and is by now a well established scheme for ML estimation is a setting with hidden variables.
We show in simulation and experiments that our NMLA closely approaches the best theoret-
ically possible precision, the Cramer-Rao lower bound (CRLB) [12]. We compare the results
and required computation time of the NMLA with a well established general purpose optimiza-
tion method and find that NMLA yields dramatic improvements in scalability and robustness.
In addition the application of NMLA in a biological setting is demonstrated (Figs. 1(d) and
1(e)).

The NMLA consists of an inner and an outer loop (Fig. 1(c)). Starting with the shot- and
excess noise corrupted image, the outer loop addresses excess noise by calculating an expected
photon count in each pixel. Based on these results, the inner loop estimates the location of the
emitters. In a pure shot noise setting, the inner loop on its own is able to perform ML localiza-
tion. The EM scheme of the inner loop implements a DC strategy by enabling the refinement
of parameter estimates to be done independently for each emitter in each iteration. Our nested
approach allows us to use this strategy even in a setting effected by excess noise.

We will first describe an alternate view of the pure shot noise model followed by the descrip-
tion of our algorithm’s inner loop and its application in a pure shot noise setting. Finally we
will describe how the full NMLA implements an excess noise aware ML estimator.

2. An alternate view of the shot noise model

Our shot noise model is equal to the one formulated in Eq. (1). In order to motivate the inner
loop of the NMLA, we suggest to adapt an alternative view of the image generation process,
focussing on the distribution of photons in the image instead of accumulated photon numbers
in each pixel. A similar view has been described in the context of image simulation in Refs.
[3, 13] but was not utilized for localization. In Ref. [14] a comparable view has been applied to
the task of spectra analysis.

Image generation is seen as the following two step process: First, a number N is randomly
determined from a Poisson distribution pN(N;E) which is parametrized by the total flux of the
image E = ∑M

i=1 Ei. Then, in a second step, N photons are randomly distributed on the pixel
grid of the image �I = (I1, ..., IM) according to a probability distribution pi(i;�θ). Each photon
increases the intensity Ii at the pixel i that it hits by the constant c. A pixel’s intensity is thus

Ii = nic. The vector �θ =
(
�θk, pk, p0|k = 1, . . . ,m

)
summarizes the parameters of m emitters and

additional stray background light. While the vector �θk holds the location of emitter k, the term
pk stands for the relative amount of light coming from this emitter. It can also be seen as the
a priori probability of a photon to have the origin k. The term p0 denotes the percentage of
background light.

Our perspective allows us to write the probability for the generation of an image �I as the
product:

p�I(�I;
�θ ,E) = pN(N;E)p�I|N(�I|N;�θ). (3)



The term p�I|N(�I|N;�θ) stands for the conditional probability of the image given that it con-

tains a total of N photons. It is a multinomial distribution and can be written as p�I|N(�I|N;�θ) =

ĉ∏M
i=0 pi(i;�θ)

Ii
c . The constant ĉ is the accordant multinomial coefficient.

Let us now examine the probability distribution pi(i;�θ) according to which the photons are
distributed on the pixel grid. We consider it to be a mixture of m+1 components:

pi(i;�θ) = ∑m
k=0 pi|k(i|k;�θk)pk. (4)

The term pi|k(i|k;�θk) denotes the probability for a photon to be recorded at a specific pixel
i, given it is of origin k. For photons originating from the background (k = 0) it is considered
a uniform distribution. The distribution for photons coming from one of the emitters (k > 0) is
derived by integrating the PSF over the pixel’s area and normalizing it with the PSF’s integral
over the image area. We use a Gaussian approximation [15, 9, 4] of the PSF for this purpose.

3. Localization with the inner loop

We will now describe the inner loop of our algorithm which is capable of performing ML
localization of multiple emitters. By utilizing Eq. (3), it is possible to independently acquire
ML estimates for the model parameters

�θ ∗ = argmax
�θ

p�I|N(�I|N;�θ) (5)

and the total image flux
E∗ = argmax

E
pN(N;E). (6)

While the total image flux can be simply estimated as E∗ = ∑M
i=1 Ii/c, estimation of the model

parameters is less trivial. In order to find the optimal set of parameters defined above, we em-
ploy an EM algorithm that will in every iteration produce an estimate at least as good as the
previous one. The algorithm starts with an initial set of parameters �θ 0 and generates a sequence
of ever improving models by executing two steps repeatedly:

• The inner E-step: Regard the current parameters �θ t of the mixed-distribution as correct
and use it to estimate how much of the intensity of each pixel belongs to each light source
and how much to the background.

• The inner M-step: Regard the estimates of the E-step as correct and use them to indepen-
dently determine the parameters of each light source �θ t+1.

It has been shown that the estimates obtained by the EM scheme improve with each iteration
until convergence [16]. We will now describe the two steps in detail.

The inner E-step

Using Bayes’ theorem, it is possible to calculate for each pixel i the probability pk|i(k|i;�θ t) that
a photon measured at this position has a specific origin k:

pk|i(k|i;�θ t) =
pi|k(i|k;�θ t)pk

∑m
k′=0 pi|k′(i|k′;�θ t)pk

(7)

The E-step uses these probabilities to calculate a set of numbers It
i,k.

It
i,k = Ii pk|i(k|i;�θ t) (8)

This can be seen as separating the intensity Ii at each pixel i into fractions It
i,k, assumed to

originate from the different sources k.



The inner M-step

The estimates for the a priori probabilities are acquired in the following way:

pt+1
k =

∑M
i=1 It

i,k

∑M
i=1 Ii

(9)

Based on the results of the E-step the new parameters for each emitter �θk
t+1

of the new model
are independently estimated as:

�θk
t+1

= argmax
�θk

M

∑
i=1

(
It
i,k ln pi|k(i|k;�θk)

)
(10)

In order to maximize the expression we use the general purpose optimization method known as
Powell’s method [17]. This task can be performed independently for each emitter.

Estimating the flux

For some applications, it may be desired to estimate not only the above mentioned parameters
of each light source but also the amount of light that is emitted by it. The average number of
photons recorded per exposure, originating from a source k, will be called the flux of the source.
It can be described as:

Êk = E pk (11)

While the algorithm described above provides an estimate for the a priori probability pk of
each light source, it is straight forward to calculate a maximum likelihood estimate for the
total image flux E. It can be done independently of the rest of the parameters �θ . The result is
proportional to the sum of all pixel intensities:

E∗ = ∑M
i=1 Ii
c

(12)

Accordingly, the flux of a specific light source can be estimated up to the factor c as Ê∗
k =

pkE∗. The gain factor c of the system is required in order to compute absolute estimates of
the photon counts. If it is unknown, the results obtained still allow for comparison between
different light sources.

4. Localization with the complete NMLA

Let us now examine the complete model including the probabilistic EMCCD amplification as
described in Ref. [7]. We observe an image of EMCCD signals �S = (S1, ...,SM) generated from
an unknown photon image�n = (n1, ...,nM). During amplification, each pixel’s signal Si is taken
from the distribution described in Eq. (2). The new task is now to concurrently find the model
parameters �θ ∗ and the flux of the image E∗, which maximize the probability to observe the
image�S of observed signals. In this model, it is not possible to find the estimates independently:

(�θ ∗,E∗) = argmax
(�θ ,E)

p�S(
�S;�θ ,E;g) (13)

= argmax
(�θ ,E)

∑
�n∈�nset

p�S,�n(
�S,�n;�θ ,E;g), (14)



where the function p�S,�n(
�S,�n;�θ ,E;g) denotes the joint probability to acquire a photon image �n

and observe �S. The term�nset denotes the set of possible photon images of the same size.
We again apply the EM scheme to find the solution. Starting with an initial estimate (�θ 0,E0),

the algorithm creates an iteratively improving sequence of tuples that converge to an optimum.
As in the optimization of the pure shot noise model, the new estimates are in each iteration
calculated by executing two steps:

• The outer E-step: Regard the current parameters (�θ t ,Et) as correct and use them to esti-
mate each pixel’s expected photon count n̂t

i , given the pixel’s observed signal Si.

• The outer M-step: Regard the results of the E-step as correct and use them to re-estimate
the parameters �θ t+1 as well as the total image flux Et+1 and the flux for each light source
Êt+1

k .

The two estimation tasks that are to be solved in the outer M-step, closely resemble the ML task
defined for the pure shot noise model described above and in fact we can use the same scheme
to solve them. This amounts to a nested EM algorithm in which the M-step consists of an EM
algorithm itself. We will now describe the steps in detail:

The outer E-step:

Based on the current parameters (�θ t ,Et) we calculate the expected number of photons n̂t
i for

each pixel i, given the observed signal Si. It is is defined as:

n̂t
i =

∑∞
n=0 npSi|ni

(Si|n;g)pni(n;�θ t ,Et)

∑∞
n=0 pSi|ni

(Si|n;g)pni(n;�θ t ,Et)
(15)

The function pni(n;�θ t ,Et) stands for the a priori probability of a specific number of photons
n to have hit pixel i. It is assumed to be a Poisson distribution with the flux Et

i at the pixel as
its single parameter. We compute this flux based on the last estimates of the model �θ t and the
mean total photon count Et :

Et
i = pi(i;�θ t)Et (16)

We compute Eq. (15) efficiently as

n̂t
i =

√
Et

i ·Si/g · I0
(
2 ·√Si ·Et

i /g
)

I1
(
2 ·√Si ·Et

i /g
) , (17)

where I0 and I1 are the modified Bessel functions of the first kind of order zero and one, respec-
tively.

The outer M-step:

Even though the estimates for the model and the mean photon count have to be performed
together, in each iteration of the algorithm their new estimates can be found independently of
one another. The tasks are essentially equivalent to tasks described in Eq. (5) and Eq. (6). We
will first describe the optimization of the emitter parameters �θ t+1



Optimizing the estimate of the emitter parameters:

Using the expected values calculated in the previous step, the next parameter estimate is defined
as:

�θ t+1 = argmax
�θ

M

∑
i=0

n̂t
i ln pi(i;�θ) (18)

Expression 18 can be identified with the maximization problem formulated in Eq. (5). Indeed
the new parameter estimates �θ t+1 can be acquired by employing the inner loop as described
above. It has to be modified only so far as to substitute the image intensities Ii for the current
expected photon count n̂t

i . This constitutes a nested EM algorithm in which the M-step consists
of an EM algorithm itself.

Optimizing the estimate for the total image flux:

The maximum likelihood estimation of the total image flux can be identified with task 6. It has
an analytical solution analogous to Eq. (12):

E∗ =
M

∑
i=1

n̂t
i (19)

As in the pure shot noise model, the flux for the different light sources Ê∗
k can be calculated

accordingly as Ê∗
k = p∗kE∗.

5. Evaluation with simulated images

To evaluate our method and determine what additional gain is to be expected from the extension
of the pure shot noise model, the inner loop as well as the complete NMLA were applied to
simulated images with and without excess noise. We compared the standard deviation of the
localization results with theoretically predicted bounds for precision (Fig. 2). As expected, the
inner loop of our algorithm attains the CRLB in a pure shot noise case for a range of different
values of the flux (Fig. 2(a)) [4]. After deriving the CRLB for the excess noise aware ML
estimator, we find that it is attained by the NMLA. We confirm the finding from Ref. [13] that
the approximation of the CRLB for excess noise, obtained by multiplying the CRLB for a pure
shot noise setting by a factor of

√
2 is not appropriate for low photon counts. Surprisingly, this

approximation from Ref. [9] closely corresponds to the results attained by the ML estimator,
which is based on a pure shot noise model and implemented by our inner loop (Figs. 2,3).

The same general picture can be observed when different levels of Poisson background noise
are applied (Fig. 2(b)). With increasing background, however, a deviation between the results
of all three ML estimators and the corresponding theoretical bounds is evident. This apparent
general feature of the ML localization has been observed independently in Ref. [18]. Since
heavy background is a common feature in biological applications this effect might be worth
further examination.

6. Evaluation on images of fluorescent beads

To evaluate our technique experimentally, we imaged fluorescent beads under various light
conditions and tracked them using the NMLA and its inner loop (Fig. 3). As in simulation,
the results are in agreement with the theoretical bound. The NMLA yielded a lower standard
deviation than its inner loop for each of the observed tracks. As in simulation the difference is
larger for low photon counts.
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Fig. 2. The NMLA and its inner loop closely approach the theoretical bounds in simulation.
(a) The s.d. of the localization results as a function of the flux of the blob. The complete
NMLA (hollow red squares) and the inner loop (red triangles) were applied to the simulated
images. The inner loop was also applied to the same image series without excess noise (blue
triangles). The results are compared with theoretical bounds: the Cramer-Rao lower bound
(CRLB) for a scenario without excess noise (blue line), the CRLB considering excess noise
(red line) and the approximated bound suggested in Ref. [9] (black line). The NMLA yields
the highest possible precision, given by the CRLB, in settings with excess noise. (b) The
s.d. of the localization results as a function of background flux. The flux of the blob was set
to 25 photons. The remaining parameters and the algorithms employed were as in a. Note
that the deviation between the theoretical bounds and the results of the estimators (also
seen in Ref. [18]) is a general feature of the ML localization. In a and b, simulated images
(without excess noise outlined in blue, and the same image with excess noise outlined in
red) correspond to different values of flux/background flux indicated by the dashed line.

7. Evaluation of computation time and robustness

We compared the performance of the NMLA and a direct application of Powell’s method [17]
to the log likelihood as described in Ref. [9] (supplementary equation 138). To assess the scal-
ability we applied both optimizers to a grid of overlapping emitters and measured the required
computation time for different emitter numbers (Fig. 4(a)). To compare the robustness of the
methods we initialized them at varying positions and measured localization success in a single
emitter setting (Fig. 4(b)). In both cases Powell’s method is outperformed by our NMLA.

Note that the set of parameters Powell’s method is employed on differs from our �θ since it
does not include the a priori probabilities pk. Instead the flux of each emitter Êk = pkE,∀k =
1, . . . ,m as well as the background flux Ê0 = p0E are used. When performing our experiments
we used the implementation of Powell’s method in the Apache Commons Mathematics Library.
We set the absolute and relative threshold used as stopping criteria to 0.001, which produced
results of similar quality as the NMLA.
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Fig. 3. The s.d. of the localization results as a function of the measured flux of fluorescent
bead images. Three 3000-frame-long movies were obtained using TIRF microscopy with
different laser powers and EMCCD gain of 300. The beads were localized with the NMLA
(squares) and its inner loop (triangles). Each pair of a triangle and a square at a certain value
of flux corresponds to a single bead; displayed are images of three tracked beads connected
to their resulting data point. The results are compared with the CRLB considering excess
noise. The background flux used in the calculation of the bound was derived from the
average intensities in manually selected empty areas of the movies (see Methods). The
inset is an enlarged view of the section corresponding to the low flux region (dashed lines)
including the theoretical bound from Ref. [9].

8. Discussion

The ML estimator based on the pure shot noise model is frequently used on EMCCD images
[4, 5]. However, we suggest to use the ML estimator based on this model as an approximate
solution only if enough light is available. One should also consider the findings from Ref. [6]
and determine whether EMCCD amplification is the tool of choice in such a setting. On the
other hand, for the low photon count setting which is relevant not only in biology and astron-
omy, we conclude from theory, simulation, and experiments that significantly better results can
be obtained when the statistical model accounts for excess noise in addition to shot noise. The
NMLA is a powerful implementation of the excess noise aware ML estimator.

We see three major advantages of our method with regard to practical application: First, our
algorithm keeps computation time low as the number of overlapping emitters is increased (Fig.
4(a)). Second, since the algorithm allows independent re-estimation of emitter locations, it al-
lows for easy coarse level parallelization. This could facilitate implementations on the graphics
processing unit (GPU). Even a naively parallelized version an CPU further improved scalabil-
ity. Third, our algorithm proved to be significantly less sensitive to random initialization than
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Fig. 4. Th NMLA outperforms Powell’s method with regard to scalability and robustness.
(a) Required computation time as a function of the number of emitters. Different numbers
of overlapping emitters were tracked with three different implementations of the excess
noise aware ML estimator: The computation time required by Powell’s method (circles)
grows significantly faster than the time required by the NMLA (squares). A naively par-
allelized version of the NMLA (diamonds) yields a further improvement. (b) Number of
inliers in localization results as a function of the standard deviation of the random ini-
tialization. In each frame the algorithms were initialized at a Gaussian distributed random
location around the true position of the emitter. Every location estimate closer than 1.3 pix-
els to the correct location was considered an inlier. The NMLA achieves 100% inliers for
higher standard deviations and does not loose as many as Powell’s method.

the general purpose optimizer (Fig. 4(b)).
There is by now a deep theoretical understanding of ML estimation in EMCCD images and

its potential in low light microscopy [6]. We have designed and tested a new tool for ML
estimation that can help to utilize these findings in cell biology and other areas. A variation of
this scheme has already been successfully employed by us in Refs. [19, 20].

An implementation of the NMLA is available as open source software under Gen-
eral Public License. It can be installed under the name Low Light Tracking Tool
(http://fiji.sc/Low Light Tracking Tool) via the image processing software Fiji.

Appendix

Imaging using the Total Internal Reflection Fluorescence Microscope

An inverted stand, manual XY stage Olympus IX71 microscope (Olympus, Tokyo, Japan) with
custom-built TIRF condenser and manual TIRF angle adjustment was employed for imaging
beads (Fig. 3) and dyniens inside the cytoplasm of a fission yeast zygote (Figs. 1(a) and 1(b)).
Imaging was performed using an Olympus UApo 150x 1.45 Oil TIRFM inf/0.13-0.21 corr
(Olympus, Tokyo, Japan) objective with diode-pumped solid state 491nm laser for GFP ex-
citation and 560 nm laser for mCherry/tdTomato excitation (75mW; Cobolt, Solna, Sweden).
Laser intensity was controlled using the acousto-optic tunable filter in the Andor Revolution
laser combiner (ALC, Andor Technology plc., Belfast, UK). The wavelength filter used was
the BL HC 525/30 (Semrock Inc., Rochester, NY, USA). The microscope was equipped with
an Andor iXon EM+ DU-897 BV back illuminated EMCCD (Andor Technology plc., Belfast,
UK) with pixel size of EMCCD chip being 16µm and image pixel size being 0.106µm with
the 150x objective. The system was controlled using the Andor iQ software version 1.9.1 (An-



dor Technology plc., Belfast, UK). For imaging dynein in the cytoplasm (Fig. 1), the imaging
conditions used were: excitation with 80% power (18mW) of 491nm laser, exposure time of 5-
9ms, with 2000 continuous repetitions. The dyneins in the strain used in this paper are labeled
with triple GFP [21]. The beads (Estapor 0.103 µm fluorescent beads, Merck KGaA, Darmstadt,
Germany) were imaged with 2%, 3% and 5% power (0.45mW, 0.675mW and 1.125mW respec-
tively) of 491nm laser, exposure time of 5ms, with 3000 continuous repetitions. The EMCCD
gain used was 300 and the pre-amplification gain was 4.8.

Calculating the CRLB

We calculated the CRLB as the inverse of the Fisher information matrix [12]. For the pure
shot noise setting the elements of the Fisher information matrix were calculated as described in
Ref. [4]. For the case with excess noise, the elements of the Fisher information matrix can be
computed as

FIMab =
M

∑
i=1

E ′
Si;�θ ,E

[
∂ lnq(Si;Ei)

∂a
· ∂ lnq(Si;Ei)

∂b

]
(20)

=
M

∑
i=1

∞

∑
Si

q(Si;Ei) · ∂ lnq(Si;Ei)

∂a
· ∂ lnq(Si;Ei)

∂b
, (21)

where a,b ∈ �θ ∪{E} are the parameters and E ′
Si;�θ ,E

stands for the expected value with regard
to the signal Si of the pixel i and q(Si;Ei) describes the probability distribution of the signal

Si, which is parametrized by the pixel’s flux Ei = pi

(
i;�θ

)
·E. A deduction of Eq. (20) can be

found in Ref. [6]. As done in Ref. [9] we calculate q(Si;Ei) efficiently as

q(Si;Ei) =
∞

∑
n=0

pSi|ni
(Si|n;g) · pni (n;Ei)

= exp(−Ei) ·δ (Si)+ exp(−Si/g−Ei) · g−1 ·Ei√
Ei ·Si/g

· I1
(

2 ·
√

Ei ·Si/g
)
,

with I1 being the modified Bessel function of the first kind of order one.

Simulation of images for precision measurement

To calculate the standard deviations shown in Fig. 2(a) we generated a series of 250 simulated
15x15 pixel images for each value of flux. For Fig. 2(b) a series of 1000 simulated 15x15
pixel images was created for each value of background flux. In both cases a single emitter was
placed in the center of each image. The standard deviation of the Gaussian used as PSF was
set to be 1.3 pixels. Photon images were generated by randomly drawing each pixel’s photon
count ni from a Poisson distribution parametrized by the pixel’s flux Ei. We calculated the flux
as combination of the Gaussian integral over the pixel’s area and the per pixel background flux.
The algorithms were initialized in the center of the first frame. The initial value of pk in the first
frame was 10% for all emitters. All algorithms subsequently used the results of one frame as
initialization for the next one.

After the inner loop was applied to these photon images, the EMCCD amplification was
simulated. An EMCCD gain of 300 was used. As done in [9], we drew random numbers from
a continuous gamma distribution, approximating for the discrete distribution described by Eq.
(2). The results were rounded afterwards to determine the pixel’s final signal Si. We use the
Apache Commons Mathematics Library implementation of the Poisson distribution and the
Colt Library implementation of the gamma distribution.



Measuring computation time

The simulated images used to produce Fig. 4(a) were generated in the same way as the images
used for precision measurement, but using a grid of emitters instead of a single one. The image
sequences had a size of 11x11 pixels (1 emitter), 11x16 pixels (2 emitters), 16x16 pixels (4
emitters), 21x21 pixels (9 emitters), 21x 26 pixels (12 emitters), 26x26 pixels (16 emitters)and
26x31 pixels (20 emitters). The first emitter was set at pixel location (5,5) with all other emitters
shifted in x and y direction by multiples of 5 pixels. The Gaussians used to model the PSF of
the emitters was set to have a standard deviation of 1.3 pixels. Each emitter was set to have a
flux of 100 photons. Background flux was set to 1 photon per pixel. A sequence of 10 frames
was generated for each number of emitters. The images were post processed to account for
EMCCD excess noise as was done for precision measurement.

To perform tracking the accordant number of emitters was initialized in the first frame on
their true position and the initial p0

k set to 5%. It should be noted that this initialization is
problematic when applied on the grid with 20 emitters, because background is implicitly set to
0. We found however, that localization was performed correctly in practice.

The localization results from one frame were used as initialization for the next. Computation
time was averaged over all frames. The calculations were performed on a Intel® Core™ i7-
3820 CPU. The program was run in a virtual machine with 4 simulated cores (using VMware
Player). The guest system was Ubuntu 12.04 hosted by Windows 7.

Measuring robustness

Sequences of 1000 simulated 15x15 pixel images with were generated and post processed as for
precision measurement. The flux of the single emitter was set to 100 photons. The background
flux was set to 0.25 photons per pixel. For each frame the initial p0

k for the estimators was set to
5%. The initialization of the location was in each frame randomly determined using a normal
distribution centered around the true position. Different standard deviations were used for each
sequence.

Estimation of per pixel photon counts

The simulated images used to produce Figs. 3(b) and 3(c) were generated in the following man-
ner. The estimated per pixel photon counts indicated by color in Figs. 1 and 3 were computed
according to the manufacturer’s information. First, the bias of 100 counts was subtracted from
the signal (resulting values below zero were interpreted as zero). Then, the resulting values
were divided by the EMCCD gain of 300 and finally multiplied by a sensitivity factor (given in
the Andor iXon EM+ DU-897 performance sheet) of 12.17 electrons per A/D count. Per pixel
photon counts for the simulated EMCCD images in Fig. 2(b) were calculated by dividing the
pixel’s signal by the EMCCD gain of 300.

Tracking of fluorescent beads

Isolated beads were selected from each movies first frame. The beads were tracked indepen-
dently, starting form a manual initialization in the first frame. The initial value of pk in the first
frame was 10% for all emitters. The standard deviation of the Gaussian to be used as approxi-
mate PSF was experimentally determined and set to be 1.3 pixels for all emitters. The cameras
bias of 100 counts in each pixel was subtracted for the complete NMLA as well as for the inner
loop by itself. In case of the complete NMLA, each pixel’s signal was subsequently divided
by the sensitivity factor (given in the Andor iXon EM+ DU-897 performance sheet) of 12.17
electrons per A/D count. This factor can be ignored when the inner loop is applied by itself.

In order to correct the drift of the beads under the microscope during the 3000 frames long
movies, the standard deviations displayed in Figure 3 were calculated in the following way:



(
1

3000 ∑3000
l=1 ( f (l)− xl

est)
2
) 1

2 , where xl
est is the estimated x-position in frame l and f (l) = ml+b

is a linear least squares fit to all estimated x-positions and their frame number.

Implementation details for MNLA

Each iteration of the NMLA was performed in a window around the last estimated position. The
width of the square window was 6σ +6 pixels, where σ is the standard deviation of the Gaus-
sian approximating the emitter’s PSF. After each iteration, the window was shifted according
to the new position estimate. The iteration was continued until the improvement of the log like-
lihood (as described in Ref. [9] in supplementary equation 138) between two outer iterations
dropped below a threshold of 0.001 or the maximum number of 30 iterations was reached.

The inner loop was employed in a window like the complete one. In order to solve the opti-
mization task in the M-step of the inner loop we employed Powell’s method [17] implemented
in the Apache Commons Mathematics Library.

For the experiments regarding computation time and robustness we used the center of mass
of all It

k,i as initialization in every M-step, provided it yielded an improvement regarding the
current optimization task. After this initialization Powell’s method was employed.

After each iteration, we calculated the change of parameters as max(|pt
k −

pt−1
k |,

∥∥∥�θ t
k −�θ t−1

k

∥∥∥). The iterations in the inner loop were continued until the change of

parameters dropped below a threshold of 0.001 or the maximum of 1000 iterations was
reached.
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