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Abstract
The ability of a mitochondrion to undergo fission and fusion, and to be transported and localized within a cell are central 
not just to proper functioning of mitochondria, but also to that of the cell. The cytoskeletal filaments, namely microtubules, 
F-actin and intermediate filaments, have emerged as prime movers in these dynamic mitochondrial shape and position 
transitions. In this review, we explore the complex relationship between the cytoskeleton and the mitochondrion, by delving 
into: (i) how the cytoskeleton helps shape mitochondria via fission and fusion events, (ii) how the cytoskeleton facilitates 
the translocation and anchoring of mitochondria with the activity of motor proteins, and (iii) how these changes in form and 
position of mitochondria translate into functioning of the cell.
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Introduction

Mitochondria are double-membraned organelles that are 
involved in a multitude of processes including generation of 
adenosine triphosphate (ATP), thermogenesis, intra-cellular 
 Ca2+ homeostasis, reactive oxygen species (ROS) produc-
tion, apoptosis and stem cell differentiation [1–6]. The outer 
mitochondrial membrane (OMM) is a relatively smooth lipid 
bilayer, whereas the inner mitochondrial membrane (IMM) 
folds inward to form structures known as cristae [7, 8]. The 
region between the two mitochondrial membranes is the 
intermembrane space [7]. The OMM allows the exchange 
of metabolites between the intermembrane space and the 
cytosol while the IMM contains the electron transport chain 
(ETC) proteins, and encloses the mitochondrial matrix, 
where signalling processes including the Kreb’s cycle, 
β-oxidation and ROS production take place [9, 10].

In living cells, mitochondria appear as tubular, inter-
connected networks, which change shape by undergoing 

fission and fusion (Fig. 1). These fission–fusion dynamics 
are crucial to the maintenance of mitochondrial quality and 
energy production in the cell. OMM fusion is regulated by 
mitofusin 1 and mitofusin 2 (MFN1 and MFN2) while fis-
sion is mediated by the dynamin-related protein 1 (DRP1) 
[11, 12]. MID49, MID51 and mitochondrial fission factor 
(MFF) recruit DRP1 to the OMM [13]. In budding yeast, 
the OMM protein, Fis1p promotes mitochondrial fission 
by recruiting the DRP1 homolog Dnm1p to mitochondria 
[14]. Human Fis1 (hFis1/Fis1) also binds DRP1 with ER 
proteins at the mitochondria-ER interface during mitochon-
drial fission [15]. hFis1 binds to and inhibits the GTPase 
activity of MFN1, MFN2, and the IMM fusion regulator 
optic atrophy 1 (OPA1) thereby giving rise to a more frag-
mented mitochondrial network [16]. hFis1 induces DRP1-
dependent mitochondrial fission by forming mitochondria-
ER contacts that trigger mitochondrial calcium influx [17]. 
Intriguingly, in absence of the hFis1 domain responsible for 
mitochondria-ER tethering, mitochondria cluster near the 
nucleus, indicating that hFis1 potentially maintains mito-
chondrial organisation by also modulating mitochondrial 
transport [16].

IMM fusion and fission are carried out by two differ-
ent forms of OPA1. Two IMM peptidases namely OMA1 
and YME1L1 proteolytically cleave OPA1 to form the 
long, transmembrane form and short, soluble forms of 
OPA1 (L-OPA1 and S-OPA1, respectively) and this aids 
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the membrane fusion activity of Opa1 [18–20]. The mem-
brane anchoring of L-OPA1 to the mitochondria-specific 
lipid cardiolipin is sufficient for IMM fusion [21]. Stoichio-
metric levels of S-OPA1 mediate fast membrane fusion [20] 
thus, loss of OPA1 function results in fragmentation of the 
mitochondrial network [22]. Interestingly, increased lev-
els of S-OPA1 downregulates fusion, however, the precise 
mechanism through which this occurs remains unknown [20, 
23]. Another IMM protein, MTP18 fragments mitochondria 
when over-expressed, and results in hyperfusion of mito-
chondria when depleted [24]. The expression of MTP18 cor-
relates with DRP1-mediated fission. While MTP18 is pre-
sent at the IMM, it lacks conserved IMM motifs or domains. 
Thus, the role of MTP18 as a ubiquitous IMM fission protein 
has not been fully established.

The functional requirements of a cell correlate with 
changes in mitochondrial dynamics, form and position-
ing. For instance, brown adipocytes display fragmented 
mitochondrial networks through the activity of DRP1 and 
cleavage of OPA1 in response to adrenergic stimulation to 
enable the transition from nutrient oxidation to thermogen-
esis [25]. On the contrary, maintenance of tubular networks 

of mitochondria by astrocytes during neuroinflammation is 
necessary for astrocyte survival [26]. Dividing cells exhibit 
fragmented mitochondria, with the increase in mitochon-
drial number reducing partitioning error during independent 
segregation of mitochondria into daughter cells [27, 28]. 
Additionally, during meiotic cell division, mitochondria 
are anchored to the poles of Schizosaccharomyces pombe 
zygotes to enable uniparental inheritance of mitochondria 
[29]. The transport and accumulation of mitochondria to 
specific compartments in neurons is crucial for their func-
tioning [30–34]. Thus, variability in mitochondrial form and 
localisation in response to the function or metabolic state of 
the cell maintains mitochondrial and cellular health [35, 36].

Recent research has demonstrated that the cytoskeleton 
regulates mitochondrial dynamics, positioning and function 
within the cell. The cytoskeleton in eukaryotic cells con-
sists of actin filaments (F-actin), microtubules, intermedi-
ate filaments and septins. F-actin is assembled from G-actin 
and is mediated by actin nucleators and crosslinkers such 
as formins, fascin and Arp2/3 [37]. F-actin can form higher 
order flexible structures that organise into linear bundles, 
two-dimensional networks and three-dimensional gels [34]. 

Fig. 1  Overview of the players involved in effecting mitochon-
drial dynamics. Mitochondrial fission is mediated by DRP1, which 
is recruited by MFF, MID49 and MID51. Fission is inhibited when 
mitochondria are associated with microtubules. Mitochondrial fusion 

is brought about by L-OPA1, MFN1 and MFN2. F-actin and its asso-
ciated proteins enable mitochondrial fission. S-OPA1 and MTP18 
induce mitochondrial fission
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F-actin is widely distributed throughout cells, forming a 
range of cytoskeletal structures of varying functions. Spe-
cifically, actin filaments nucleated from inverted formin-2 
(INF2) facilitate mitochondrial fission, while fascin-bound 
actin filaments form filopodia which a cell uses to probe its 
environment [38, 39]. Actin networks shape the surface of 
the cell, provide mechanical stability to the cell and par-
ticipate in cytokinesis and help in cell locomotion [40–42].

Myosins are F-actin-based motor proteins important for 
their role in muscle contraction and responsible for actin-
based motility through ATP hydrolysis [43]. F-actin is 
involved in regulating mitochondrial fission, positioning 
and ROS production, and non-muscle myosin II has been 
implicated in mitochondrial fission [44–52].

Microtubules are dynamic, hollow filaments which help 
direct intracellular transport, form the mitotic spindle dur-
ing cell division, and direct the position of organelles within 
the cell [53–55]. Microtubules typically emerge from the 
microtubule-organising centre (MTOC), where their minus-
ends are capped. Microtubules require the minus and plus-
end directed motor proteins, cytoplasmic dynein (henceforth 
dynein) and kinesin, respectively, to generate forces and 
move cargo along cytoskeletal tracks [43]. Microtubules 
inhibit fission of associated mitochondria and act as tracks 
for mitochondrial transport and anchorage [27, 56–61].

Intermediate filaments (IFs) are non-polar structures that 
provide mechanical strength to a cell and anchor organelles 
[62, 63]. IFs also affect mitochondrial morphology, organi-
sation, membrane potential and lipid composition [64–69]. 
The three cytoskeletal filaments—F-actin, microtubules and 
the IFs are crosslinked by plectin [70, 71]. Plectin alters 
mitochondrial size and ROS production [72, 73]. Septins 
are a unique component of the cytoskeleton that assemble 
into non-polar filaments forming bundles, rings and cage-
like structures that aid in the organisation of compartments 
inside cells [74]. Septins have also been observed to alter 
mitochondrial form [75].

The cytoskeleton is a key determinant 
of mitochondrial dynamics

Mitochondrial fission and fusion dynamics play an essen-
tial role in maintaining mitochondrial health and survival. 
Mitochondrial fission is proposed to help remove damaged 
mitochondria through mitophagy, stimulate mitochondrial 
DNA replication and biogenesis, while mitochondrial fusion 
aids the spread of metabolites, enzymes and mitochondrial 
gene products within the mitochondrial network as well as 
dilutes the effects of damaged mitochondria during ageing 
[76–78]. During the early stages of Drosophila oogenesis, 
a reduction of MFN induces mitochondrial fragmentation 
which aids the removal of damaged mitochondrial DNA 

(mtDNA) by mitophagy proteins [77, 78]. On the other 
hand, mitochondrial fusion safeguards differentiated skeletal 
muscles from accumulation of mtDNA point mutations and 
deletions [78]. Deletion of MFN1 and MFN2 leads to severe 
depletion of mtDNA in skeletal muscles and causes muscle 
atrophy in mice [78]. Taken together, the maintenance of 
fission–fusion balance is important for mitochondrial func-
tion and thereby cell survival. Here, we describe how the 
cytoskeleton facilitates, and in some instances, dictates mito-
chondrial fission–fusion dynamics.

F‑actin facilitates mitochondrial fission

F-actin plays a key role in mitochondrial fission by aiding the 
activity of DRP1 (Fig. 2) [39]. Mitochondrial fission occurs 
when DRP1 oligomers form ring-like structures around the 
OMM, leading to constriction and eventual fission of the 
mitochondrion [79]. However, mitochondrial circumfer-
ences are often wider than the diameter of DRP1 rings [80]. 
Thus, F-actin enables the pre-constriction of mitochondria at 
mitochondria-ER contacts, thereby decreasing the mitochon-
drial cross-sectional diameter and enabling DRP1-mediated 
scission [44, 45]. The presence of F-actin is sufficient to 
increase DRP1 activity in vitro, possibly, because F-actin 
aids the maturation of DRP1 oligomers to form functional 
rings around the mitochondria [46]. Thus, deletion of the 
actin-depolymerising protein, cofilin1 leads to accumulation 
of DRP1, which then induces mitochondrial fragmentation 
[81]. However, another study showed that while the down-
regulation of cofilin through RNAi resulted in increased 
accumulation and association of DRP1 with mitochondria, 
it led to elongated mitochondria, likely due to the abrogation 
of DRP1-independent steps in mitochondrial fission [82].

Mitochondrial morphology and dynamics are also regu-
lated by actin-associated proteins. The depletion of the actin-
nucleating protein INF2 leads to the loss of F-actin, and 
results in increased mitochondrial lengths [83]. Subsequent 
work showed that another actin nucleator, Spire1C and INF2 
together form short actin filaments that localise at mitochon-
dria-ER contacts [84]. These short filaments generate forces 
required to tighten ER tubules around the mitochondrial 
circumference [85]. The actin-based motor proteins non-
muscle myosin II (myosin IIA and myosin IIB) are likely 
responsible for this tightening since they localise to mito-
chondria-ER sites, and upon depletion lead to longer mito-
chondria [52]. Recently, the non-muscle myosin isoform IIC 
(NMIIC) was also implicated in aiding mitochondrial fission 
[86]. A mutation in the gene that encodes for NMIIC hin-
ders mitochondrial fission and alters the organisation of the 
mitochondrial genome [86]. This mutation is also linked to 
peripheral neuropathy and hearing loss, suggesting a possi-
ble role for aberrant mitochondrial dynamics in these disease 
states [86]. INF2-mediated actin polymerisation enhances 
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the percentage of mitochondria-ER contacts about two-
fold upon ionomycin stimulation, which increases the sup-
ply of calcium from ER stores to the mitochondrial matrix 
through the voltage-dependent anion channel (VDAC) and 
mitochondrial calcium uniporter (MCU) [87]. This in turn 
activates IMM constriction through ETC activity in a DRP1-
independent manner [87].

Actin has also been implicated in mediating stress-
induced mitochondrial fission through the transient assembly 
of F-actin on hyperfused regions of the OMM aided by the 
actin branching protein, Arp2/3 [82]. The actin assembly 
promotes DRP1 recruitment followed by rapid fission over 
3–5 min [88]. The ability of Arp2/3 to form these transient 

actin structures possibly aids the rapid increase in mitochon-
drial fission observed during mitotic prophase [82].

Attachment of mitochondria to microtubules 
inhibits mitochondrial fission

In eukaryotic cells, microtubules and mitochondria physi-
cally associate with each other [27, 57, 89, 90]. Transmis-
sion electron microscopy revealed that α- and β-tubulin 
localise to mitochondrial membranes and immunoprecipi-
tation experiments confirmed that they specifically associate 
with the VDACs on the OMM [91]. Since then, the impor-
tance of microtubules and associated proteins in maintaining 

Fig. 2  The cytoskeleton and its associated proteins regulate mito-
chondrial dynamics. DRP1-mediated mitochondrial fission is inhib-
ited when mitochondria are bound to microtubules via Mmb1p and 
vimentin. DRP1 binds directly to Sept2 and other recruitment factors 
at mitochondrial fission sites. F-actin aids mitochondrial fission at 
mitochondria-ER contact sites along with INF2, Spire1C and myosin 

II. Cofilin inhibits F-actin-mediated mitochondrial fission. DRP1-
independent IMM constriction is enhanced through increased supply 
of calcium from the ER to the mitochondrial matrix via the VDAC 
and MCU. Arp2/3-mediated branched actin clouds also induce mito-
chondrial fission independent of the ER
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mitochondrial morphology, dynamics, and health has been 
explored in more detail.

Disruption of microtubule assembly decreases mitochon-
drial motility, thereby affecting mitochondrial fission and 
fusion [92]. In Dictyostelium discoideum cells, depolymeri-
sation of microtubules using the drug nocodazole reduces 
both mitochondrial fission and fusion [56]. In S. pombe, 
depolymerisation or destabilisation of microtubules ampli-
fies mitochondrial fragmentation due to an increase in the 
rate of mitochondrial fission [27, 57–59]. Conversely, reduc-
tion in the frequency of microtubule catastrophe results in 
longer microtubules and thereby, longer mitochondria due 
to decreased mitochondrial fission rates [27].

Recent studies have identified how microtubule-asso-
ciated proteins (MAPs) modulate mitochondrial form and 
dynamics. One such example is the microtubule-associated 
tumour suppressor 1 (MTUS1), which normally localises 
to the OMM via MFN1 and MFN2 [93]. The depletion of 
MTUS1 results in shorter and more rounded mitochon-
dria, indicating a role for this MAP in maintaining the fis-
sion–fusion equilibrium [93]. In S. pombe, deletion of the 
microtubule–mitochondria linker protein, Mmb1p results in 
unopposed mitochondrial fission indicating that the attach-
ment of mitochondria to microtubules is important in inhib-
iting Dnm1-(yeast DRP1) mediated fission [27].

Intermediate filaments and other cytoskeletal 
proteins participate in mitochondrial dynamics

Fluorescence microscopy, subcellular fractionation and 
immunoprecipitation assays revealed that the IF vimentin 
directly binds to mitochondria [64]. Depletion of vimentin 
results in mitochondrial swelling and fragmentation [64]. 
Interestingly, this depletion also significantly reduces levels 
of α-tubulin in the mitochondrial fraction, indicating that 
vimentin possibly mediates the interaction of mitochondria 
with microtubules [64].

Septins and other cytoskeleton-associated proteins such 
as plectins also cause alterations to the mitochondrial mor-
phology [72, 75]. In skeletal myoblasts, one of the four plec-
tin isoforms namely, P1b, links IFs to mitochondria [72]. 
Loss of P1b upregulates MFN2, thereby causing a substan-
tial increase in the width of mitochondrial z-disk wrapping 
[72]. However, whether P1b directly associates with MFN2 
and the mechanism through which P1b alters mitochondrial 
morphology remain unknown.

A member of the septin family, Septin 2 (Sept2) binds 
directly to DRP1 and localises to a subset of mitochondrial 
constriction sites. Depletion of Sept2 decreases DRP1 locali-
sation to the OMM resulting in hyperfused mitochondria 
[75]. Silencing another member of the septin family, Septin 7 
(Sept7) also resulted in the formation of hyperfused mitochon-
dria possibly because depletion of Sept7 co-depletes Sept2 

[75]. The precise mechanism through which these septins pro-
mote the recruitment of DRP1 to fission sites remains elusive.

The cytoskeleton is required 
for mitochondrial transport and anchorage

Mitochondrial positioning typically involves immobilisa-
tion of mitochondria at specific sites by attachment to either 
the cytoskeleton or membranes via anchor proteins. Prior 
to immobilisation, mitochondria are often actively trans-
ported to the sites of anchorage by motor proteins on polar 
cytoskeletal tracks. In addition to fission–fusion dynamics, 
regulated positioning plays a central role in maintaining the 
organisation and functioning of the mitochondrial network.

Dynamic mitochondrial organisation is crucial in highly 
active cells such as neurons, muscle cells, and secretory 
cells, and during events with high energy demands such 
as cell division, migration, injury, and differentiation [27, 
29, 94–99]. Triggered by intracellular cues, mitochondrial 
transport and anchorage in concert likely help achieve the 
required organisation of the mitochondrial network to pro-
vide energy that drives these cellular functions and events. 
Denser populations of mitochondria within a cell main-
tain elevated ATP to ADP ratios [96]. Thus, mitochondrial 
positioning shapes energy gradients within the cell to meet 
localised energy demands. Concurrently, high energy con-
sumption results in increased local ADP levels and facili-
tates mitochondrial transport to these sites [100]. Similarly, 
 Ca2+-sensing proteins regulate mitochondrial positioning 
and motility in regions of high  Ca2+−signalling activity to 
buffer calcium levels in the cell.

Actin-based transport of mitochondria is predominantly 
observed in several plant cells, and some fungi and insects 
[62, 101, 102]. Microtubule-based movement, on the other 
hand, is the main mode of mitochondrial transport in cells 
of protists and animals such as D. discoideum, D. mela-
nogaster, and mammals [56, 60, 103, 104]. In addition to 
microtubule-based, long-range transport of mitochondria, 
neurons of several organisms employ actin-based transport 
for short-range movement and docking of mitochondria 
at pre-synaptic terminals [47, 48, 105–107]. Anchorage 
of mitochondria is also brought about by association with 
microtubules and IFs in various organisms. Here, we detail 
how the cytoskeleton and its associated proteins maintain 
mitochondrial organisation in the cell by mediating mito-
chondrial transport and anchorage.

Mitochondria rely on F‑actin and associated 
proteins for their organisation

While most mammalian cells rely on actin filaments for 
mitochondrial anchorage, actin dynamics has been impli-
cated in the movement of mitochondria during interphase 
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and mating in Saccharomyces cerevisiae [108, 109]. The 
myosin type V motor Myo2 associates with mitochondria 
through adaptor proteins to effect mitochondrial movement 
on actin cables [110–113] (Fig. 3a). Independent of motors, 
Arp2/3-mediated actin dynamics also aids the transport of 
mitochondria to the bud [108]. Mitochondrial recruitment 
of Arp2/3 proteins initiates F-actin assembly to provide 
forces for transport of mitochondria towards the bud [108, 
114–116] (Fig. 3a). The plant myosin XI family is closely 
related to the fungal and metazoan myosin V family, and 
its members transport mitochondria on F-actin tracks [117, 
118]. The unconventional myosin Myo19 has been proposed 
to play a role in transporting mitochondria on F-actin, as 
Myo19 overexpression increases mitochondrial velocities 
[119] (Fig. 3b). Myo19 localises to mitochondria by asso-
ciation with atypical mitochondrial Rho GTPases (Miro pro-
teins), or independently by virtue of the motor’s tail domain 
[120–122].

In addition to mitochondrial transport, Myo19 is likely 
involved in actin-based mitochondrial docking [119, 123, 
124] (Fig. 3b). Myo19 is required to form starvation-induced 
filopodia in cultured cells, with the motor subsequently 
localising to mitochondria enriched at these filopodia [123]. 
Depletion or overexpression of Myo19 causes perinuclear 

aggregation of mitochondria, indicating a role for Myo19 
in organising the mitochondrial network [121]. Metaphase 
and anaphase organisation of mitochondria is also depend-
ent on Myo19, with loss of Myo19 resulting in failure of 
cytokinesis [125].

Myosin V and VI possess calmodulin-binding domains 
and have been proposed to promote mitochondrial docking 
in mammalian cells as they oppose microtubule-based trans-
port of mitochondria in cultured neurons [106] (Fig. 3c). 
Additionally, myosin VI motors are recruited to ubiquitin on 
damaged mitochondria directed for mitophagy by Parkin, via 
myosin’s ubiquitin-binding domain [126]. These motors in 
turn trigger the regulated assembly of actin filaments to form 
cages around the damaged mitochondria, likely to prevent 
their movement and fusion with other mitochondria [126] 
(Fig. 3b).

The role of F-actin in maintaining mitochondrial organi-
sation is apparent in neurons and muscle cells. F-actin-
mediated anchorage prevents the movement of a third of the 
stationary axonal mitochondria in neurons [48]. Stimula-
tion of axons with nerve growth factor (NGF) is correlated 
with mitochondrial transport to NGF foci, and subsequent 
F-actin-dependent docking of mitochondria [47]. F-actin 
associated proteins have been implicated in maintaining 

Fig. 3  F-actin and myosin motors participate in mitochondrial trans-
port and anchoring. a The motor protein Myo2 and Arp2/3-mediated 
actin dynamics help transport mitochondria into the bud in S. cer-
evisiae. Mitochondria are additionally tethered along the cortex via 
anchor proteins. b In addition to the microtubule-based machinery, 
actin-based motors also participate in mitochondrial distribution. 
Myo19 associates with mitochondria either directly or via Miro pro-

teins to organise mitochondria at the cell periphery and transport 
mitochondria on F-actin. Myosin VI is recruited onto mitophagy-
destined mitochondria by ubiquitin, in order to isolate damaged mito-
chondria by triggering the formation of actin-cages around them. c 
Myosin V and VI have been implicated in activity-dependent anchor-
age of axonal mitochondria
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mitochondrial organisation in fly and worm muscle cells 
[127–129]. Cofilin and regulated Arp2/3 activity are also 
involved in maintaining mitochondrial arrangement in these 
cells [129–131].

Mitochondria are transported by kinesins 
and dyneins, and anchored by tether proteins 
on microtubules

Microtubule plus-end directed transport of mitochondria is 
enabled by the kinesin-1 (KIF5) family of motor proteins 
[60]. On the other hand, dyneins drive minus-end directed 
mitochondrial transport [60]. Adaptor proteins Milton and 
Miro, first discovered in Drosophila, link these motors to 
mitochondria to regulate their bidirectional transport on 
microtubules [132, 133]. Milton interacts with Miro, which 
localises to the OMM through its single-pass, C-terminal 
transmembrane domain [104, 134, 135]. The N-terminal 
coiled-coil domain of Milton interacts with kinesin-1 heavy 
chain, thereby recruiting the motor to mitochondria by the 
Miro-Milton association [104].

Vertebrates have two Milton and Miro orthologues 
each—trafficking kinesin protein (TRAK) 1, TRAK2, and 
Miro1, Miro2, respectively [60, 136]. In neurons, TRAK1 
binds to both kinesin-1 and the motor-adaptor complex 
dynein–dynactin, and mainly localises to axons [137]. On 
the other hand, TRAK2 predominantly localises to dendrites 
and binds to the dynein–dynactin complex as it adopts a con-
formation which precludes kinesin-1 binding [137]. TRAK2 
requires Miro1 to enable minus-end directed transport of 
mitochondria in fibroblasts, but can also regulate plus-end 
directed transport in the absence of Miro1 when KIF5C is 
overexpressed [120]. Interestingly, TRAK1 and TRAK2 
localise to mitochondria even in the absence of Miro1 and 
Miro2 [120].

Miro1 associates with dynein to facilitate redistribu-
tion of mitochondria towards the repositioned MTOC in 
response to immune-cell activation [138]. Miro1 also asso-
ciates with kinesin-1 to transport mitochondria on astral 
microtubules to the cytokinetic furrow during late anaphase 
[103] (Fig. 4a). However, in late cytokinesis, mitochondria 
are passively transported along growing microtubule tips 
in a motor-independent process due to the association of 
Miro with the + TIP protein CENP-F (Fig. 4b) [139, 140]. 
Mitochondrial localisation of CENP-F is enhanced by the 
overexpression of Miro1 [140]. Expression of truncated 
CENP-F defective for mitochondrial localisation increases 
perinuclear aggregation of mitochondria, indicating a role 
for the Miro-CENP-F association in distributing mitochon-
dria within the cell [141].

Mitochondrial motility in both axons and dendrites is 
unaltered in the absence of Miro2, but is reduced with the 
loss of Miro1 [142] (Fig. 4c, d). However, about a third 

of microtubule-dependent mitochondrial transport is pre-
served in the absence of both Miro1 and Miro2 [120, 142]. 
Together, these studies underscore the importance of Miro 
in regulating bidirectional mitochondrial transport, but also 
hint at the existence of Miro-independent mechanisms of 
mitochondrial motility and TRAK recruitment (Fig. 4e, f). 
So far, these mechanisms have been found to involve kine-
sin-1 adaptor syntabulin and mitochondrial fusion proteins. 
Syntabulin associates with mitochondria via its C-terminal 
domain to regulate mitochondrial organisation in a Miro/
TRAK-independent manner [143, 144] (Fig. 4e). Acute 
loss of syntabulin lowers mitochondrial densities in distal 
processes, reduces anterograde mitochondrial motility, and 
impairs synaptic transmissions and presynaptic short-term 
plasticity in neurons [144, 145].

Co-immunoprecipitation experiments evinced that MFN2 
interacts with Miro and TRAK proteins to maintain mito-
chondrial motility [146]. MFN1 recruits TRAK proteins 
to mitochondria in fibroblasts lacking Miro proteins [147] 
(Fig. 4f). Conversely, microtubule-based transport is likely 
necessary for fission–fusion dynamics of mitochondria 
[94]. Could the ‘tug-of-war’ interaction between kinesin 
and dynein motors attached to the same mitochondrion lead 
to opposing forces that constrict the mitochondrion? This 
constriction could then enable the recruitment of DRP1 to 
the OMM in a mechanism similar to that of actin-mediated 
constriction and fission.

Microtubules are not only necessary for long-range trans-
port, but also for activity-dependent anchorage of mitochon-
dria. About two-thirds of axonal mitochondria are immotile 
and stably associated with microtubules [48, 148, 149]. The 
microtubule-mitochondria linker protein Mmb1p suppresses 
microtubule dynamicity and stably tethers mitochondria to 
microtubules in S. pombe [57]. Microtubules are essential 
for the maintenance of mitochondrial organisation in human 
cardiomyocytes [150]. The  Ca2+-sensing EF-hand domains 
of Miro proteins make them particularly important for activ-
ity-dependent reorganisation of the mitochondrial network. 
Mutations in the EF-hand domain of Miro1 result in a loss 
of activity-dependent anchorage of mitochondria in neuronal 
and astrocytic processes [151, 152].

Syntaphilin, a microtubule-binding protein, associates 
with mitochondria through two C-terminal, OMM-target-
ing domains [149]. Axonal mitochondria are anchored to 
microtubules by syntaphilin when  Ca2+ binding by Miro 
triggers syntaphilin to bind to KIF5 and displaces the 
motor from the Miro-TRAK complex [149, 153] (Fig. 4g). 
Mitochondrial enrichment at growth cones is also depend-
ent on syntaphilin-mediated docking [154]. Demyelinated 
neurons have more stationary mitochondria docked with 
syntaphilin, to cope with the increased energy demand 
associated with the loss of saltatory conduction [155]. 
Loss of mitochondrial immobilisation in the absence of 



3976 M. Shah et al.

1 3

syntaphilin in these demyelinated neurons increases the 
likelihood of axonal degeneration [155]. Several non-
neuronal tissues express a shorter syntaphilin isoform, 
called short-syntaphilin (S-SNPH), which localises to 
mitochondria. Hypoxic stress lowers S-SNPH levels in 
some cancer cell lines which increases their invasiveness 

due to abrogation of docking and enhanced mitochondrial 
trafficking to the cell periphery [156].

Fig. 4  Role of microtubules and intermediate filaments in the trans-
port and anchorage of mitochondria. a Kinesin-1 transports mito-
chondria by the Miro-TRAK association on astral microtubules 
to the cytokinetic furrow during late anaphase. b Miro associates 
with CENP-F to transport mitochondria along growing microtubule 
plus-ends during late cytokinesis. c Dendritic mitochondria are pre-
dominantly transported on microtubules by the dynein–dynactin 
motor-adaptor complex which is recruited to mitochondria by the 
Miro1-TRAK2 association. d Axonal mitochondria are transported by 
both kinesin-1 and the dynein–dynactin complex, which are recruited 

to mitochondria predominantly by the Miro1-TRAK1 complex. e 
Syntabulin is an adaptor protein which recruits kinesin-1 to axonal 
mitochondria. f MFN1 recruits TRAK proteins to regulate mito-
chondrial transport on microtubules. g Syntaphilin anchors axonal 
mitochondria to microtubules in response to elevated  Ca2+-levels by 
inhibiting kinesin-1 activity. h Increased glucose levels inhibit kine-
sin-1-dependent mitochondrial transport in neurons due to the activ-
ity of O-GlcNAc transferase on TRAK proteins. i Neurofilament and 
vimentin are the intermediate filaments involved in anchoring and 
organising mitochondria in neurons
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Microtubule‑dependent mitochondrial organisation 
is determined by post‑translational modifications 
of tubulin, and microtubule‑associated proteins

Microtubule stability, governed by MAPs and post-transla-
tional modifications (PTMs) of tubulin, impacts mitochon-
drial transport and distribution. Other molecules including 
glucose and cytoskeleton interactors such as ADP-ribo-
sylation factors (ARFs), their activators, and adenomatous 
polyposis coli (APC), have also been reported to mediate 
mitochondrial transport by interacting with mitochondrial 
trafficking complexes [97, 157, 158]. However, in most 
reported instances, the precise mechanism of transport regu-
lation is yet to be uncovered.

Cortisol-mediated destabilisation of microtubules reduces 
mitochondrial localisation at the cell periphery though 
detachment of kinesin-1 from microtubules [159]. MAP7 
family members not only stabilise microtubules and recruit 
kinesin-1 to microtubules in vitro, but are also sufficient to 
enable kinesin-1-dependent mitochondrial transport in the 
cell [160, 161]. Stable expression of the longest isoform 
of human tau, a neuronal, microtubule-stabilising protein, 
leads to aggregations of mitochondria near the MTOC and 
reduced mitochondrial transport to the cell periphery [162]. 
Parkin, an E3 ubiquitin ligase which promotes tubulin deg-
radation and mitophagy, is also a MAP which binds to and 
stabilises microtubules [163, 164]. Mitochondrial transport 
is perturbed in the absence of Parkin, and is rescued by treat-
ment with microtubule-stabilising drugs [165].

Mitochondrial transport is additionally affected by muta-
tions and PTMs of tubulin. Motor binding to microtubules 
is impaired and mitochondrial transport is reduced in cells 
expressing mutant TUB4A isoforms associated with disor-
ders of the nervous system [166]. Tubulin nitration in micro-
tubules arrests anterograde mitochondrial transport [167]. 
Hyperglutamylation of tubulin upon loss of cytosolic car-
boxypeptidase 1 (CCP1) reduces microtubule stability and 
axonal mitochondrial motility in mice [168]. Other studies 
found that in the absence of CCP1 or both CCP1 and CCP6, 
neurons display a ~ 50% reduction in the motile mitochon-
drial population [169, 170]. Thus, polyglutamylation of 
tubulin correlates with mitochondrial halting on microtu-
bule tracks.

The ARF family of GTPases is known to regulate vesic-
ular trafficking, phospholipid metabolism, and modulate 
actin dynamics in the cell [171]. ARF-activators maintain 
mitochondrial distribution by associating with Miro pro-
teins or by limiting the Miro-TRAK association to inhibit 
dynein–driven mitochondrial transport towards the MTOC 
[157, 158]. APC stabilises microtubules and is required for 
a variety of cellular processes such as spindle formation, cel-
lular migration and chromosome segregation [172]. Cancer-
associated mutations hamper the ability of APC to bind to 

the Miro1/TRAK-2 complex, and reduce the frequency of 
initiation of anterograde mitochondrial transport [97].

Finally, glucose, a crucial nutrient for ATP generation in 
cells can dictate mitochondrial organisation. Glucose levels 
regulate synaptic activity and PTMs of the mitochondrial 
transport machinery, which in turn affect mitochondrial 
localisation by reducing motility [173, 174]. Glucose levels 
also regulate the activity of the enzyme O-GlcNAc trans-
ferase (OGT) [174]. O-glycosylation of Milton, induced by 
overexpression of OGT or increased extracellular glucose 
levels, inhibits bidirectional mitochondrial motility [173]. 
Furthermore, TRAK1 and TRAK2 are targets of nucleocy-
toplasmic OGT, which forms a ternary complex with KIF5C 
and either TRAK [175, 176]. This complex partially limits 
KIF5C-TRAK1/2-mediated mitochondrial redistribution to 
the cell periphery [176] (Fig. 4h).

Since microtubules serve as the tracks for a bulk of mito-
chondrial transport in the cell, it is not unexpected that that 
microtubule stability impacts mitochondrial transport. To 
reiterate, destabilisation of microtubules increases mito-
chondrial fission in S. pombe, mitochondrial fission and 
fusion proteins are involved in tethering mitochondria to 
other organelles in the cell, and mitochondrial fusion pro-
teins too regulate mitochondrial transport [17, 27, 147, 177, 
178]. These results suggest a close nexus between mito-
chondrial organisation and dynamics, and the microtubule 
cytoskeleton, with more diverse functions exhibited by the 
mitochondrial proteins than suggested by current research. 
In neurons, shorter mitochondria have been observed to be 
more motile than longer mitochondria [148, 179]. The close 
association between the mitochondrial fission/fusion pro-
teins and microtubule-based transport is likely a regulatory 
mechanism that primes mitochondria for effective delivery 
to destinations within the cell.

Mitochondrial positioning in muscle cells 
and neurons is mediated by intermediate filaments 
and associated proteins

Mitochondria associate with the IFs desmin and vimentin, 
and the linker protein plectin [64, 73]. Desmin is present 
at sarcoplasmic reticulum-mitochondria-associated mem-
branes and interacts with several mitochondrial proteins in 
muscle cells [180]. In the absence of desmin, mitochondria 
are clumped and disorganised [65, 180]. Depletion or muta-
tions of desmin and desmin-binding proteins plectin and 
myotubularin are accompanied with aberrant mitochondrial 
organisation, which results in muscle-degeneration [65, 73, 
180–184]. Keratin-19 is another IF which promotes proper 
mitochondrial organisation in muscle cells [67].

Neuronal organisation of mitochondria is dependent on 
their interactions with IFs vimentin, neurofilament light 
and associated proteins (Fig. 4i). Vimentin phosphorylation 
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regulates anchorage of mitochondria to these filaments 
[66, 185, 186]. Vimentin expression, controlled by micro-
RNA-124, regulates mitochondrial localisation and motility 
in neurons [187]. Complete loss of the IF neurofilament light 
increases neuronal mitochondrial motility [188, 189]. While, 
disease linked aggregations of IFs caused due to mutations 
in neuronal IFs or associated proteins reduce mitochondrial 
motility [188, 190]. Thus, intermediate filaments anchor 
mitochondria either by direct interaction or via IF-associated 
proteins to regulate intracellular mitochondrial organisation.

Mitochondrial function is modulated 
by the cytoskeleton

The effect of cytoskeletal organisation on mitochondrial 
dynamics and organisation influences mitochondrial func-
tion and thereby impacts cellular health. Based on changes 
in the cellular milieu, the cytoskeleton and associated pro-
teins position mitochondria at regions where their function is 
required. Although the interactions of the cytoskeleton with 
mitochondria have been found to alter mitochondrial func-
tion, the molecular mechanisms underlying this phenom-
enon are largely unknown [191]. In other words, studies that 
have investigated the effect of cytoskeletal changes on mito-
chondrial function have gathered correlative evidence. The 
cytoskeleton influences mitochondrial quality control and 
turnover, ATP production and calcium homeostasis [192]. 
These effects have been particularly evident in cells with 
high energy demands such as neurons and cardiomyocytes, 
as detailed below. These changes may be caused by the 
alteration in mitochondrial fission–fusion dynamics, which 
is caused by the assembly and disassembly of cytoskeletal 
proteins. Further studies are required to establish the mecha-
nisms that cause these functional changes.

Mitochondrial membrane potential and ROS 
production are regulated by F‑actin

Abrogation of F-actin depolymerisation in budding yeast 
results in reduced mitochondrial membrane potential, 
increased ROS production and reduced lifespan, all of which 
are hallmarks of apoptosis initiated by mitochondria [49, 
50]. On the contrary, a mutation which increases F-actin 
depolymerisation decreases ROS production and thereby 
increases the mother-cell-specific lifespan of yeast cells 
[51]. F-actin depolymerisation induced by oxidative stress 
leads to mitochondrial fission and thereby causes ischemia 
reperfusion injury in endothelial cells [193].

In neurons, axonal branching is prevented upon inhibi-
tion of cellular respiration, but proceeds at regions enriched 
with stationary mitochondria in the presence of NGF [194]. 

F-actin-mediated stalling of mitochondria and translational 
machinery in specific regions of sensory axons leads to ATP 
production, and consequently local translation of axonal 
mRNA to synthesize proteins required for axonal guidance 
[192, 194]. Inhibition of polymerisation of actin associated 
with mitochondria isolated from mouse brain increases 
mitochondrial oxygen consumption rate and cytochrome c 
oxidase activity [195].

Taken together, perturbation of F-actin dynamics 
increases the production of mitochondrial ROS and thereby  
induces oxidative stress in cells.

Microtubules and associated proteins alter 
mitochondrial function

Stationary mitochondria form local sources of ATP, which 
are critical for various neuronal functions including local 
protein translation, axonal branching, synaptic transmission, 
and driving sodium/potassium pump activity [192, 196].

Clusters of mitochondria positioned by microtubules 
or F-actin provide energy for local protein translation in 
dendrites during synaptic plasticity [33, 192]. This could 
affect the memory of an individual because modification 
of proteins synthesized by local translation during synap-
tic plasticity drives memory formation [33]. Mitochondria 
transported along microtubules and immobilised in the 
axons by F-actin also play a critical role in the translation 
of nuclear-encoded mitochondrial mRNAs (mtRNAs), with 
dysfunctional axonal translation triggering neurodegenera-
tion [197]. It has been proposed that mtRNAs hitchhike on 
moving mitochondria for subcellular trafficking and arrive 
at stationary mitochondria, where they are translated [198, 
199].

In cardiomyocytes, a change in the microtubule arrange-
ment alters mitochondrial organisation, and leads to defects 
in calcium release upon nanomechanical stimulus [150]. 
Destabilisation of microtubules by aberrant phosphorylation 
of MAP4 leads to mitochondrial dysfunction and apoptosis 
[200–202]. Hypoxia induces the phosphorylation of three 
key serine residues of MAP4, which leads to its dissociation 
from tubulin and translocation to mitochondria [203–205]. 
This in turn results in the opening of mitochondrial perme-
ability transition pore (mPTP), mitochondrial dysfunction 
and apoptosis [200]. Inhibition of MTUS1 in endothelial 
cells also increases mitochondrial ROS production [93].

Tubulin interacts with VDAC to regulate channel per-
meability and thereby control cellular respiration in muscle 
cells [206]. Dimeric tubulin increases the voltage sensitiv-
ity of VDAC in vitro at physiological salt conditions and 
regulates membrane permeability, limiting the ATP/ADP 
flux of mitochondria [206]. It has also been hypothesized 
that the tubulin-VDAC interaction is the molecular basis 
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for chemotherapy-induced peripheral neuropathy [207]. In 
Duchenne muscular dystrophy, low expression of dystrophin, 
a cytoskeletal protein that binds to tubulin, leads to increased 
ROS production and reduced mitochondrial  Ca2+ levels and 
thereby affects the ETC in mitochondria [208–210].

In all, microtubule destabilisation blocks mitochondrial 
transport and thereby hampers local protein translation in 
neurons, which could lead to neurodegeneration. It also pos-
sibly induces apoptosis in cardiac muscles and degeneration 
of skeletal muscles by bringing about mitochondrial defects.

Mitochondrial function and lipid composition are 
determined by IFs

Several reports indicate that IFs alter mitochondrial posi-
tioning and function, particularly in muscle cells [211]. 
Maximal respiration rates are significantly reduced in the 
mitochondria of cardiac and soleus muscles of desmin-null 
mice in situ [65]. Cardiac muscle architecture is severely 
disrupted, causing muscle degeneration, necrosis and calcifi-
cation of myocardium in these mice [212]. This results in the 
development of cardiomyocyte hypertrophy and heart fail-
ure, which are also characterised by mitochondrial defects 
[213, 214].

Physical association of mitochondria with vimentin IFs 
increases mitochondrial membrane potential [66]. Vimen-
tin also reduces the sensitivity of mitochondria to oxidative 
stress by preventing the formation of mPTP [215]. This is 
possibly because vimentin interacts with OMM-localised 
mPTP regulators [215].

Keratin IFs regulate lipid composition in mitochondria, 
which leads to increased oxygen consumption and ATP 
production. In keratinocytes lacking type I Keratin (Krt9 
through Krt20), expression of proteins belonging to res-
piratory complexes I and IV is elevated, and the cardiolipin 
and phosphatidylethanolamine content in the mitochondria 
is increased [68]. Krt6 or Krt16 null keratinocytes show 
increased mitochondrial ROS production, decreased mito-
chondrial membrane potential and reduced mitochondrial 
respiration [69]. Mutations in Krt6, Krt16 or Krt17 perturb 
mitochondrial quality control including mitophagy and lyso-
somal degradation [216].

The cytoskeleton-associated protein plectin also influ-
ences mitochondrial function. Loss of plectin leads to degen-
eration of striated muscles like cardiac and soleus muscles 
[72]. Cardiac and skeletal muscle cells devoid of plectin 
isoforms P1b or P1d alter permeability of the OMM, which 
is evidenced by a decrease in maximal respiration rate [72].

Taken together, mitochondrial association with IFs alters 
mitochondrial membrane potential, oxygen consumption rate 
and energy production.

Future perspectives

In summary, the cytoskeleton and associated proteins play a 
crucial role in regulating mitochondrial dynamics, organisa-
tion, and function. While cytoskeletal interactions with mito-
chondria are well-characterised, the molecular mechanisms 
underlying these interactions remain elusive in several cases.

As a number of organelles, namely ER, lysosomes and 
Golgi-derived vesicles have been implicated in mitochon-
drial fission, it will be interesting to see how the cytoskele-
ton-dependent positioning of these organelles is co-ordinated 
to bring about fission [44, 177, 217]. Mechanical forces have 
been shown to be sufficient to trigger mitochondrial fission 
[218]. Therefore, the activity of two opposing families of 
motor proteins attached to a single mitochondrion might also 
cause mitochondrial constriction and eventual fission.

The intercellular transport of mitochondria via tunnel-
ling nanotubes is also dependent on the cytoskeleton and 
is observed in a variety of animal tissue systems, typically 
as a response to cellular stress [61, 219–222]. However, the 
mechanisms and the importance of this transport and its 
regulation are yet to be uncovered.

The cell cycle proceeds with cytoskeletal reorganisation, 
which in turn affects mitochondrial anchorage [95, 103, 
139]. In the few mitochondrial anchors identified thus far, 
uncovering how these anchors are spatiotemporally regu-
lated in dividing cells, and if those mechanisms are different 
in post-mitotic cells like neurons, will further our under-
standing about mitochondrial positioning and the role of the 
cytoskeleton in this process.

Disruption of the proper form and functioning of the 
cytoskeleton correlates with severe health implications 
including muscle degeneration, heart failure and neurode-
generation [223–225]. Changes in mitochondrial morphol-
ogy, dynamics, motility and function also affect the health 
of the system [226, 227]. In future, it will be interesting 
to explore whether a causal relationship exists between 
cytoskeletal disruption and mitochondrial dysfunction 
observed in these pathologies.
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